Visible to the public Biblio

Filters: Keyword is cloud-based solutions  [Clear All Filters]
2021-03-22
Vimercati, S. de Capitani di, Foresti, S., Paraboschi, S., Samarati, P..  2020.  Enforcing Corporate Governance's Internal Controls and Audit in the Cloud. 2020 IEEE 13th International Conference on Cloud Computing (CLOUD). :453–461.
More and more organizations are today using the cloud for their business as a quite convenient alternative to in-house solutions for storing, processing, and managing data. Cloud-based solutions are then permeating almost all aspects of business organizations, resulting appealing also for functions that, already in-house, may result sensitive or security critical, and whose enforcement in the cloud requires then particular care. In this paper, we provide an approach for securely relying on cloud-based services for the enforcement of Internal Controls and Audit (ICA) functions for corporate governance. Our approach is based on the use of selective encryption and of tags to provide a level of self-protection to data and for enabling only authorized parties to access data and perform operations on them, providing privacy and integrity guarantees, as well as accountability and non-repudiation.
2020-07-13
ahmad, sahan, Zobaed, SM, Gottumukkala, Raju, Salehi, Mohsen Amini.  2019.  Edge Computing for User-Centric Secure Search on Cloud-Based Encrypted Big Data. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :662–669.

Cloud service providers offer a low-cost and convenient solution to host unstructured data. However, cloud services act as third-party solutions and do not provide control of the data to users. This has raised security and privacy concerns for many organizations (users) with sensitive data to utilize cloud-based solutions. User-side encryption can potentially address these concerns by establishing user-centric cloud services and granting data control to the user. Nonetheless, user-side encryption limits the ability to process (e.g., search) encrypted data on the cloud. Accordingly, in this research, we provide a framework that enables processing (in particular, searching) of encrypted multiorganizational (i.e., multi-source) big data without revealing the data to cloud provider. Our framework leverages locality feature of edge computing to offer a user-centric search ability in a realtime manner. In particular, the edge system intelligently predicts the user's search pattern and prunes the multi-source big data search space to reduce the search time. The pruning system is based on efficient sampling from the clustered big dataset on the cloud. For each cluster, the pruning system dynamically samples appropriate number of terms based on the user's search tendency, so that the cluster is optimally represented. We developed a prototype of a user-centric search system and evaluated it against multiple datasets. Experimental results demonstrate 27% improvement in the pruning quality and search accuracy.

2019-09-11
Moyne, J., Mashiro, S., Gross, D..  2018.  Determining a Security Roadmap for the Microelectronics Industry. 2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC). :291–294.

The evolution of the microelectronics manufacturing industry is characterized by increased complexity, analysis, integration, distribution, data sharing and collaboration, all of which is enabled by the big data explosion. This evolution affords a number of opportunities in improved productivity and quality, and reduced cost, however it also brings with it a number of risks associated with maintaining security of data systems. The International Roadmap for Devices and System Factory Integration International Focus Team (IRDS FI IFT) determined that a security technology roadmap for the industry is needed to better understand the needs, challenges and potential solutions for security in the microelectronics industry and its supply chain. As a first step in providing this roadmap, the IFT conducted a security survey, soliciting input from users, suppliers and OEMs. Preliminary results indicate that data partitioning with IP protection is the number one topic of concern, with the need for industry-wide standards as the second most important topic. Further, the "fear" of security breach is considered to be a significant hindrance to Advanced Process Control efforts as well as use of cloud-based solutions. The IRDS FI IFT will endeavor to provide components of a security roadmap for the industry in the 2018 FI chapter, leveraging the output of the survey effort combined with follow-up discussions with users and consultations with experts.

2019-03-04
Diao, Y., Rosu, D..  2018.  Improving response accuracy for classification- based conversational IT services. NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium. :1–15.
Conversational IT services are expected to reduce user wait times and improve overall customer satisfaction. Cloud-based solutions are readily available for enterprise subject matter experts (SMEs) to train user-question classifiers and build conversational services with little effort. However, methodologies that the SMEs can use to improve the response accuracy and conversation quality are merely stated and evaluated. In complex service scenarios such as software support, the scope of topics is typically large and the training samples are often limited. Thus, training the classifier based on labeled samples of plain user utterances is not effective in most cases. In this paper, we identify several methods for improving classification quality and evaluate them in concrete training set scenarios. Particularly, a process-based methodology is described that builds and refines on top of service domain knowledge in order to develop a scalable solution for training accurate conversation services. Enterprises and service providers are continuously seeking new ways to improve customer experience on working with IT systems, where user wait times and service resolution quality are critical business metrics. One of the latest trends is the use of conversational IT services. Customers can interact with a conversational service to express their questions in natural language and the system can automatically return relevant answers or execute back-end processes for automated actions. Various text classification techniques have been developed and applied to understand the user questions and trigger the correct responses. For instance, in the context of IT software support, customers can use conversational systems to get answers about software product errors, licenses, or upgrade processes. While the potential benefits of building conversational services are huge, it is often difficult to effectively train classification models that cover well the scope of realistically complex services. In this paper, we propose a training methodology that addresses the limitations in both the scope of topics and the scarcity of the training set. We further evaluate the proposed methodology in a real service support scenario and share the lessons learned.
2018-10-26
Chaudhry, J., Saleem, K., Islam, R., Selamat, A., Ahmad, M., Valli, C..  2017.  AZSPM: Autonomic Zero-Knowledge Security Provisioning Model for Medical Control Systems in Fog Computing Environments. 2017 IEEE 42nd Conference on Local Computer Networks Workshops (LCN Workshops). :121–127.

The panic among medical control, information, and device administrators is due to surmounting number of high-profile attacks on healthcare facilities. This hostile situation is going to lead the health informatics industry to cloud-hoarding of medical data, control flows, and site governance. While different healthcare enterprises opt for cloud-based solutions, it is a matter of time when fog computing environment are formed. Because of major gaps in reported techniques for fog security administration for health data i.e. absence of an overarching certification authority (CA), the security provisioning is one of the the issue that we address in this paper. We propose a security provisioning model (AZSPM) for medical devices in fog environments. We propose that the AZSPM can be build by using atomic security components that are dynamically composed. The verification of authenticity of the atomic components, for trust sake, is performed by calculating the processor clock cycles from service execution at the resident hardware platform. This verification is performed in the fully sand boxed environment. The results of the execution cycles are matched with the service specifications from the manufacturer before forwarding the mobile services to the healthcare cloud-lets. The proposed model is completely novel in the fog computing environments. We aim at building the prototype based on this model in a healthcare information system environment.