Visible to the public Biblio

Filters: Keyword is Cloud federations  [Clear All Filters]
2019-10-15
Janjua, K., Ali, W..  2018.  Enhanced Secure Mechanism for Virtual Machine Migration in Clouds. 2018 International Conference on Frontiers of Information Technology (FIT). :135–140.
Live VM migration is the most vulnerable process in cloud federations for DDOS attacks, loss of data integrity, confidentiality, unauthorized access and injection of malicious viruses on VM disk images. We have scrutinized following set of crucial security features which are; authorization, confidentiality, replay protection (accountability), integrity, mutual authentication and source non-repudiation (availability) to cater different threats and vulnerabilities during live VM migration. The investigated threats and vulnerabilities are catered and implemented in a proposed solution, presented in this paper. Six security features-authorization, confidentiality, replay protection, integrity, mutual authentication and source non-repudiation are focused and modular implementation has been done. Solution is validated in AVISPA tool in modules for threats for all the notorious security requirements and no outbreak were seen.
2018-10-26
Halabi, T., Bellaiche, M., Abusitta, A..  2018.  A Cooperative Game for Online Cloud Federation Formation Based on Security Risk Assessment. 2018 5th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2018 4th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :83–88.

Cloud federations allow Cloud Service Providers (CSPs) to deliver more efficient service performance by interconnecting their Cloud environments and sharing their resources. However, the security of the federated Cloud service could be compromised if the resources are shared with relatively insecure and unreliable CSPs. In this paper, we propose a Cloud federation formation model that considers the security risk levels of CSPs. We start by quantifying the security risk of CSPs according to well defined evaluation criteria related to security risk avoidance and mitigation, then we model the Cloud federation formation process as a hedonic coalitional game with a preference relation that is based on the security risk levels and reputations of CSPs. We propose a federation formation algorithm that enables CSPs to cooperate while considering the security risk introduced to their infrastructures, and refrain from cooperating with undesirable CSPs. According to the stability-based solution concepts that we use to evaluate the game, the model shows that CSPs will be able to form acceptable federations on the fly to service incoming resource provisioning requests whenever required.