Visible to the public Biblio

Filters: Keyword is automation system  [Clear All Filters]
2018-02-06
Uddin, M. N., Lie, H., Li, H..  2017.  Hybrid Cloud Computing and Integrated Transport System. 2017 International Conference on Green Informatics (ICGI). :111–116.

In the 21st century, integrated transport, service and mobility concepts for real-life situations enabled by automation system and smarter connectivity. These services and ideas can be blessed from cloud computing, and big data management techniques for the transport system. These methods could also include automation, security, and integration with other modes. Integrated transport system can offer new means of communication among vehicles. This paper presents how hybrid could computing influence to make urban transportation smarter besides considering issues like security and privacy. However, a simple structured framework based on a hybrid cloud computing system might prevent common existing issues.

2017-11-27
Parate, M., Tajane, S., Indi, B..  2016.  Assessment of System Vulnerability for Smart Grid Applications. 2016 IEEE International Conference on Engineering and Technology (ICETECH). :1083–1088.

The smart grid is an electrical grid that has a duplex communication. This communication is between the utility and the consumer. Digital system, automation system, computers and control are the various systems of Smart Grid. It finds applications in a wide variety of systems. Some of its applications have been designed to reduce the risk of power system blackout. Dynamic vulnerability assessment is done to identify, quantify, and prioritize the vulnerabilities in a system. This paper presents a novel approach for classifying the data into one of the two classes called vulnerable or non-vulnerable by carrying out Dynamic Vulnerability Assessment (DVA) based on some data mining techniques such as Multichannel Singular Spectrum Analysis (MSSA), and Principal Component Analysis (PCA), and a machine learning tool such as Support Vector Machine Classifier (SVM-C) with learning algorithms that can analyze data. The developed methodology is tested in the IEEE 57 bus, where the cause of vulnerability is transient instability. The results show that data mining tools can effectively analyze the patterns of the electric signals, and SVM-C can use those patterns for analyzing the system data as vulnerable or non-vulnerable and determines System Vulnerability Status.

2015-05-06
Farzan, F., Jafari, M.A., Wei, D., Lu, Y..  2014.  Cyber-related risk assessment and critical asset identification in power grids. Innovative Smart Grid Technologies Conference (ISGT), 2014 IEEE PES. :1-5.

This paper proposes a methodology to assess cyber-related risks and to identify critical assets both at power grid and substation levels. The methodology is based on a two-pass engine model. The first pass engine is developed to identify the most critical substation(s) in a power grid. A mixture of Analytical hierarchy process (AHP) and (N-1) contingent analysis is used to calculate risks. The second pass engine is developed to identify risky assets within a substation and improve the vulnerability of a substation against the intrusion and malicious acts of cyber hackers. The risk methodology uniquely combines asset reliability, vulnerability and costs of attack into a risk index. A methodology is also presented to improve the overall security of a substation by optimally placing security agent(s) on the automation system.
 

2015-05-01
Mohagheghi, S..  2014.  Integrity Assessment Scheme for Situational Awareness in Utility Automation Systems. Smart Grid, IEEE Transactions on. 5:592-601.

Today's more reliable communication technology, together with the availability of higher computational power, have paved the way for introduction of more advanced automation systems based on distributed intelligence and multi-agent technology. However, abundance of data, while making these systems more powerful, can at the same time act as their biggest vulnerability. In a web of interconnected devices and components functioning within an automation framework, potential impact of malfunction in a single device, either through internal failure or external damage/intrusion, may lead to detrimental side-effects spread across the whole underlying system. The potentially large number of devices, along with their inherent interrelations and interdependencies, may hinder the ability of human operators to interpret events, identify their scope of impact and take remedial actions if necessary. Through utilization of the concepts of graph-theoretic fuzzy cognitive maps (FCM) and expert systems, this paper puts forth a solution that is able to reveal weak links and vulnerabilities of an automation system, should it become exposed to partial internal failure or external damage. A case study has been performed on the IEEE 34-bus test distribution system to show the efficiency of the proposed scheme.

Farzan, F., Jafari, M.A., Wei, D., Lu, Y..  2014.  Cyber-related risk assessment and critical asset identification in power grids. Innovative Smart Grid Technologies Conference (ISGT), 2014 IEEE PES. :1-5.

This paper proposes a methodology to assess cyber-related risks and to identify critical assets both at power grid and substation levels. The methodology is based on a two-pass engine model. The first pass engine is developed to identify the most critical substation(s) in a power grid. A mixture of Analytical hierarchy process (AHP) and (N-1) contingent analysis is used to calculate risks. The second pass engine is developed to identify risky assets within a substation and improve the vulnerability of a substation against the intrusion and malicious acts of cyber hackers. The risk methodology uniquely combines asset reliability, vulnerability and costs of attack into a risk index. A methodology is also presented to improve the overall security of a substation by optimally placing security agent(s) on the automation system.

Farzan, F., Jafari, M.A., Wei, D., Lu, Y..  2014.  Cyber-related risk assessment and critical asset identification in power grids. Innovative Smart Grid Technologies Conference (ISGT), 2014 IEEE PES. :1-5.

This paper proposes a methodology to assess cyber-related risks and to identify critical assets both at power grid and substation levels. The methodology is based on a two-pass engine model. The first pass engine is developed to identify the most critical substation(s) in a power grid. A mixture of Analytical hierarchy process (AHP) and (N-1) contingent analysis is used to calculate risks. The second pass engine is developed to identify risky assets within a substation and improve the vulnerability of a substation against the intrusion and malicious acts of cyber hackers. The risk methodology uniquely combines asset reliability, vulnerability and costs of attack into a risk index. A methodology is also presented to improve the overall security of a substation by optimally placing security agent(s) on the automation system.