Visible to the public Biblio

Filters: Keyword is real-time monitoring  [Clear All Filters]
2023-05-19
Aljohani, Nader, Bretas, Arturo, Bretas, Newton G.  2022.  Two-Stage Optimization Framework for Detecting and Correcting Parameter Cyber-Attacks in Power System State Estimation. 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe). :1—5.
One major tool of Energy Management Systems for monitoring the status of the power grid is State Estimation (SE). Since the results of state estimation are used within the energy management system, the security of the power system state estimation tool is most important. The research in this area is targeting detection of False Data Injection attacks on measurements. Though this aspect is crucial, SE also depends on database that are used to describe the relationship between measurements and systems' states. This paper presents a two-stage optimization framework to not only detect, but also correct cyber-attacks pertaining the measurements' model parameters used by the SE routine. In the first stage, an estimate of the line parameters ratios are obtained. In the second stage, the estimated ratios from stage I are used in a Bi-Level model for obtaining a final estimate of the measurements' model parameters. Hence, the presented framework does not only unify the detection and correction in a single optimization run, but also provide a monitoring scheme for the SE database that is typically considered static. In addition, in the two stages, linear programming framework is preserved. For validation, the IEEE 118 bus system is used for implementation. The results illustrate the effectiveness of the proposed model for detecting attacks in the database used in the state estimation process.
2022-01-10
Ren, Sothearin, Kim, Jae-Sung, Cho, Wan-Sup, Soeng, Saravit, Kong, Sovanreach, Lee, Kyung-Hee.  2021.  Big Data Platform for Intelligence Industrial IoT Sensor Monitoring System Based on Edge Computing and AI. 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). :480–482.
The cutting edge of Industry 4.0 has driven everything to be converted to disruptive innovation and digitalized. This digital revolution is imprinted by modern and advanced technology that takes advantage of Big Data and Artificial Intelligence (AI) to nurture from automatic learning systems, smart city, smart energy, smart factory to the edge computing technology, and so on. To harness an appealing, noteworthy, and leading development in smart manufacturing industry, the modern industrial sciences and technologies such as Big Data, Artificial Intelligence, Internet of things, and Edge Computing have to be integrated cooperatively. Accordingly, a suggestion on the integration is presented in this paper. This proposed paper describes the design and implementation of big data platform for intelligence industrial internet of things sensor monitoring system and conveys a prediction of any upcoming errors beforehand. The architecture design is based on edge computing and artificial intelligence. To extend more precisely, industrial internet of things sensor here is about the condition monitoring sensor data - vibration, temperature, related humidity, and barometric pressure inside facility manufacturing factory.
2020-12-07
Islam, M. S., Verma, H., Khan, L., Kantarcioglu, M..  2019.  Secure Real-Time Heterogeneous IoT Data Management System. 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :228–235.
The growing adoption of IoT devices in our daily life engendered a need for secure systems to safely store and analyze sensitive data as well as the real-time data processing system to be as fast as possible. The cloud services used to store and process sensitive data are often come out to be vulnerable to outside threats. Furthermore, to analyze streaming IoT data swiftly, they are in need of a fast and efficient system. The Paper will envision the aspects of complexity dealing with real time data from various devices in parallel, building solution to ingest data from different IOT devices, forming a secure platform to process data in a short time, and using various techniques of IOT edge computing to provide meaningful intuitive results to users. The paper envisions two modules of building a real time data analytics system. In the first module, we propose to maintain confidentiality and integrity of IoT data, which is of paramount importance, and manage large-scale data analytics with real-time data collection from various IoT devices in parallel. We envision a framework to preserve data privacy utilizing Trusted Execution Environment (TEE) such as Intel SGX, end-to-end data encryption mechanism, and strong access control policies. Moreover, we design a generic framework to simplify the process of collecting and storing heterogeneous data coming from diverse IoT devices. In the second module, we envision a drone-based data processing system in real-time using edge computing and on-device computing. As, we know the use of drones is growing rapidly across many application domains including real-time monitoring, remote sensing, search and rescue, delivery of goods, security and surveillance, civil infrastructure inspection etc. This paper demonstrates the potential drone applications and their challenges discussing current research trends and provide future insights for potential use cases using edge and on-device computing.
2020-04-13
Wang, Yongtao.  2019.  Development of AtoN Real-time Video Surveillance System Based on the AIS Collision Warning. 2019 5th International Conference on Transportation Information and Safety (ICTIS). :393–398.
In view of the challenges with Aids to Navigation (AtoN) managements and emergency response, the present study designs and presents an AtoN real-time video surveillance system based on the AIS collision warning. The key technologies regarding with AtoN cradle head control and testing algorithms, video image fusion, system operation and implementation are demonstrated in details. Case study is performed at Guan River (China) to verify the effectiveness of the AtoN real-time video surveillance system for maritime security supervision. The research results indicate that the intellective level of the AtoN maintenance and managements could be significantly improved. The idea of designing modules brings a good flexibility and a high portability for the present surveillance system, therefore provides a guidance for the design of similar maritime surveillance systems.
2020-02-17
Liu, Xiaobao, Wu, Qinfang, Sun, Jinhua, Xu, Xia, Wen, Yifan.  2019.  Research on Self-Healing Technology for Faults of Intelligent Distribution Network Communication System. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :1404–1408.
The intelligent power communication network is closely connected with the power system, and carries the data transmission and intelligent decision in a series of key services in the power system, which is an important guarantee for the smart power service. The self-healing control (SHC) of the distribution network monitors the data of each device and node in the distribution network in real time, simulates and analyzes the data, and predicts the hidden dangers in the normal operation of the distribution network. Control, control strategies such as correcting recovery and troubleshooting when abnormal or fault conditions occur, reducing human intervention, enabling the distribution network to change from abnormal operating state to normal operating state in time, preventing event expansion and reducing the impact of faults on the grid and users.
2019-01-16
Upadhyay, H., Gohel, H. A., Pons, A., Lagos, L..  2018.  Windows Virtualization Architecture For Cyber Threats Detection. 2018 1st International Conference on Data Intelligence and Security (ICDIS). :119–122.

This is very true for the Windows operating system (OS) used by government and private organizations. With Windows, the closed source nature of the operating system has unfortunately meant that hidden security issues are discovered very late and the fixes are not found in real time. There needs to be a reexamination of current static methods of malware detection. This paper presents an integrated system for automated and real-time monitoring and prediction of rootkit and malware threats for the Windows OS. We propose to host the target Windows machines on the widely used Xen hypervisor, and collect process behavior using virtual memory introspection (VMI). The collected data will be analyzed using state of the art machine learning techniques to quickly isolate malicious process behavior and alert system administrators about potential cyber breaches. This research has two focus areas: identifying memory data structures and developing prediction tools to detect malware. The first part of research focuses on identifying memory data structures affected by malware. This includes extracting the kernel data structures with VMI that are frequently targeted by rootkits/malware. The second part of the research will involve development of a prediction tool using machine learning techniques.

2018-11-14
Alagar, V., Alsaig, A., Ormandjiva, O., Wan, K..  2018.  Context-Based Security and Privacy for Healthcare IoT. 2018 IEEE International Conference on Smart Internet of Things (SmartIoT). :122–128.

Healthcare Internet of Things (HIoT) is transforming healthcare industry by providing large scale connectivity for medical devices, patients, physicians, clinical and nursing staff who use them and facilitate real-time monitoring based on the information gathered from the connected things. Heterogeneity and vastness of this network provide both opportunity and challenges for information collection and sharing. Patient-centric information such as health status and medical devices used by them must be protected to respect their safety and privacy, while healthcare knowledge should be shared in confidence by experts for healthcare innovation and timely treatment of patients. In this paper an overview of HIoT is given, emphasizing its characteristics to those of Big Data, and a security and privacy architecture is proposed for it. Context-sensitive role-based access control scheme is discussed to ensure that HIoT is reliable, provides data privacy, and achieves regulatory compliance.

2018-02-02
Paul-Pena, D., Krishnamurthy, P., Karri, R., Khorrami, F..  2017.  Process-aware side channel monitoring for embedded control system security. 2017 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC). :1–6.

Cyber-physical systems (CPS) are interconnections of heterogeneous hardware and software components (e.g., sensors, actuators, physical systems/processes, computational nodes and controllers, and communication subsystems). Increasing network connectivity of CPS computational nodes facilitates maintenance and on-demand reprogrammability and reduces operator workload. However, such increasing connectivity also raises the potential for cyber-attacks that attempt unauthorized modifications of run-time parameters or control logic in the computational nodes to hamper process stability or performance. In this paper, we analyze the effectiveness of real-time monitoring using digital and analog side channels. While analog side channels might not typically provide sufficient granularity to observe each iteration of a periodic loop in the code in the CPS device, the temporal averaging inherent to side channel sensory modalities enables observation of persistent changes to the contents of a computational loop through their resulting effect on the level of activity of the device. Changes to code can be detected by observing readings from side channel sensors over a period of time. Experimental studies are performed on an ARM-based single board computer.

2015-05-06
Oliveira Vasconcelos, R., Nery e Silva, L.D., Endler, M..  2014.  Towards efficient group management and communication for large-scale mobile applications. Pervasive Computing and Communications Workshops (PERCOM Workshops), 2014 IEEE International Conference on. :551-556.

Applications such as fleet management and logistics, emergency response, public security and surveillance or mobile workforce management use geo-positioning and mobile networks as means of enabling real-time monitoring, communication and collaboration among a possibly large set of mobile nodes. The majority of those systems require real-time tracking of mobile nodes (e.g. vehicles, people or mobile robots), reliable communication to/from the nodes, as well as group communication among the mobile nodes. In this paper we describe a distributed middleware with focus on management of context-defined groups of mobile nodes, and group communication with large sets of nodes. We also present a prototype Fleet Tracking and Management system based on our middleware, give an example of how context-specific group communication can enhance the node's mutual awareness, and show initial performance results that indicate small overhead and latency of the group communication and management.

2015-05-01
Beasley, C., Venayagamoorthy, G.K., Brooks, R..  2014.  Cyber security evaluation of synchrophasors in a power system. Power Systems Conference (PSC), 2014 Clemson University. :1-5.

The addition of synchrophasors such as phasor measurement units (PMUs) to the existing power grid will enhance real-time monitoring and analysis of the grid. The PMU collects bus voltage, line current, and frequency measurements and uses the communication network to send the measurements to the respective substation(s)/control center(s). Since this approach relies on network infrastructure, possible cyber security vulnerabilities have to be addressed to ensure that is stable, secure, and reliable. In this paper, security vulnerabilities associated with a synchrophasor network in a benchmark IEEE 68 bus (New England/New York) power system model are examined. Currently known feasible attacks are demonstrated. Recommended testing and verification methods are also presented.