Biblio
This is very true for the Windows operating system (OS) used by government and private organizations. With Windows, the closed source nature of the operating system has unfortunately meant that hidden security issues are discovered very late and the fixes are not found in real time. There needs to be a reexamination of current static methods of malware detection. This paper presents an integrated system for automated and real-time monitoring and prediction of rootkit and malware threats for the Windows OS. We propose to host the target Windows machines on the widely used Xen hypervisor, and collect process behavior using virtual memory introspection (VMI). The collected data will be analyzed using state of the art machine learning techniques to quickly isolate malicious process behavior and alert system administrators about potential cyber breaches. This research has two focus areas: identifying memory data structures and developing prediction tools to detect malware. The first part of research focuses on identifying memory data structures affected by malware. This includes extracting the kernel data structures with VMI that are frequently targeted by rootkits/malware. The second part of the research will involve development of a prediction tool using machine learning techniques.
Healthcare Internet of Things (HIoT) is transforming healthcare industry by providing large scale connectivity for medical devices, patients, physicians, clinical and nursing staff who use them and facilitate real-time monitoring based on the information gathered from the connected things. Heterogeneity and vastness of this network provide both opportunity and challenges for information collection and sharing. Patient-centric information such as health status and medical devices used by them must be protected to respect their safety and privacy, while healthcare knowledge should be shared in confidence by experts for healthcare innovation and timely treatment of patients. In this paper an overview of HIoT is given, emphasizing its characteristics to those of Big Data, and a security and privacy architecture is proposed for it. Context-sensitive role-based access control scheme is discussed to ensure that HIoT is reliable, provides data privacy, and achieves regulatory compliance.
Cyber-physical systems (CPS) are interconnections of heterogeneous hardware and software components (e.g., sensors, actuators, physical systems/processes, computational nodes and controllers, and communication subsystems). Increasing network connectivity of CPS computational nodes facilitates maintenance and on-demand reprogrammability and reduces operator workload. However, such increasing connectivity also raises the potential for cyber-attacks that attempt unauthorized modifications of run-time parameters or control logic in the computational nodes to hamper process stability or performance. In this paper, we analyze the effectiveness of real-time monitoring using digital and analog side channels. While analog side channels might not typically provide sufficient granularity to observe each iteration of a periodic loop in the code in the CPS device, the temporal averaging inherent to side channel sensory modalities enables observation of persistent changes to the contents of a computational loop through their resulting effect on the level of activity of the device. Changes to code can be detected by observing readings from side channel sensors over a period of time. Experimental studies are performed on an ARM-based single board computer.
Applications such as fleet management and logistics, emergency response, public security and surveillance or mobile workforce management use geo-positioning and mobile networks as means of enabling real-time monitoring, communication and collaboration among a possibly large set of mobile nodes. The majority of those systems require real-time tracking of mobile nodes (e.g. vehicles, people or mobile robots), reliable communication to/from the nodes, as well as group communication among the mobile nodes. In this paper we describe a distributed middleware with focus on management of context-defined groups of mobile nodes, and group communication with large sets of nodes. We also present a prototype Fleet Tracking and Management system based on our middleware, give an example of how context-specific group communication can enhance the node's mutual awareness, and show initial performance results that indicate small overhead and latency of the group communication and management.
The addition of synchrophasors such as phasor measurement units (PMUs) to the existing power grid will enhance real-time monitoring and analysis of the grid. The PMU collects bus voltage, line current, and frequency measurements and uses the communication network to send the measurements to the respective substation(s)/control center(s). Since this approach relies on network infrastructure, possible cyber security vulnerabilities have to be addressed to ensure that is stable, secure, and reliable. In this paper, security vulnerabilities associated with a synchrophasor network in a benchmark IEEE 68 bus (New England/New York) power system model are examined. Currently known feasible attacks are demonstrated. Recommended testing and verification methods are also presented.