Visible to the public Biblio

Filters: Keyword is grid operation  [Clear All Filters]
2021-02-16
Siu, J. Y., Panda, S. Kumar.  2020.  A Specification-Based Detection for Attacks in the Multi-Area System. IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society. :1526—1526.
In the past decade, cyber-attack events on the power grid have proven to be sophisticated and advanced. These attacks led to severe consequences on the grid operation, such as equipment damage or power outages. Hence, it is more critical than ever to develop tools for security assessment and detection of anomalies in the cyber-physical grid. For an extensive power grid, it is complex to analyze the causes of frequency deviations. Besides, if the system is compromised, attackers can leverage on the frequency deviation to bypass existing protection measures of the grid. This paper aims to develop a novel specification-based method to detect False Data Injection Attacks (FDIAs) in the multi-area system. Firstly, we describe the implementation of a three-area system model. Next, we assess the risk and devise several intrusion scenarios. Specifically, we inject false data into the frequency measurement and Automatic Generation Control (AGC) signals. We then develop a rule-based method to detect anomalies at the system-level. Our simulation results proves that the proposed algorithm can detect FDIAs in the system.
2018-02-06
Ashok, A., Sridhar, S., Rice, M., Smith, J..  2017.  Substation Monitoring to Enhance Situational Awareness \#x2014; Challenges and Opportunities. 2017 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.

Situational awareness during sophisticated cyber attacks on the power grid is critical for the system operator to perform suitable attack response and recovery functions to ensure grid reliability. The overall theme of this paper is to identify existing practical issues and challenges that utilities face while monitoring substations, and to suggest potential approaches to enhance the situational awareness for the grid operators. In this paper, we provide a broad discussion about the various gaps that exist in the utility industry today in monitoring substations, and how those gaps could be addressed by identifying the various data sources and monitoring tools to improve situational awareness. The paper also briefly describes the advantages of contextualizing and correlating substation monitoring alerts using expert systems at the control center to obtain a holistic systems-level view of potentially malicious cyber activity at the substations before they cause impacts to grid operation.

2015-05-05
Zonouz, S., Davis, C.M., Davis, K.R., Berthier, R., Bobba, R.B., Sanders, W.H..  2014.  SOCCA: A Security-Oriented Cyber-Physical Contingency Analysis in Power Infrastructures. Smart Grid, IEEE Transactions on. 5:3-13.

Contingency analysis is a critical activity in the context of the power infrastructure because it provides a guide for resiliency and enables the grid to continue operating even in the case of failure. In this paper, we augment this concept by introducing SOCCA, a cyber-physical security evaluation technique to plan not only for accidental contingencies but also for malicious compromises. SOCCA presents a new unified formalism to model the cyber-physical system including interconnections among cyber and physical components. The cyber-physical contingency ranking technique employed by SOCCA assesses the potential impacts of events. Contingencies are ranked according to their impact as well as attack complexity. The results are valuable in both cyber and physical domains. From a physical perspective, SOCCA scores power system contingencies based on cyber network configuration, whereas from a cyber perspective, control network vulnerabilities are ranked according to the underlying power system topology.
 

2015-05-01
Zonouz, S., Davis, C.M., Davis, K.R., Berthier, R., Bobba, R.B., Sanders, W.H..  2014.  SOCCA: A Security-Oriented Cyber-Physical Contingency Analysis in Power Infrastructures. Smart Grid, IEEE Transactions on. 5:3-13.

Contingency analysis is a critical activity in the context of the power infrastructure because it provides a guide for resiliency and enables the grid to continue operating even in the case of failure. In this paper, we augment this concept by introducing SOCCA, a cyber-physical security evaluation technique to plan not only for accidental contingencies but also for malicious compromises. SOCCA presents a new unified formalism to model the cyber-physical system including interconnections among cyber and physical components. The cyber-physical contingency ranking technique employed by SOCCA assesses the potential impacts of events. Contingencies are ranked according to their impact as well as attack complexity. The results are valuable in both cyber and physical domains. From a physical perspective, SOCCA scores power system contingencies based on cyber network configuration, whereas from a cyber perspective, control network vulnerabilities are ranked according to the underlying power system topology.