Biblio
Due to greater network capacity and faster data speed, fifth generation (5G) technology is expected to provide a huge improvement in Internet of Things (IoTs) applications, Augmented & Virtual Reality (AR/VR) technologies, and Machine Type Communications (MTC). Consumer will be able to send/receive high quality multimedia data. For the protection of sensitive multimedia data, a large number of encryption algorithms are available, however, these encryption schemes does not provide light-weight encryption solution for real-time application requirements. This paper proposes a new multi-chaos computational efficient encryption for digital images. In the proposed scheme, plaintext image is transformed using Lifting Wavelet Transform (LWT) and only one-fourth part of the transformed image is encrypted using light-weight Chebyshev and Intertwining maps. Both chaotic maps were chaotically coupled for the confusion and diffusion processes which further enhances the image security. Encryption/decryption speed and other security measures such as correlation coefficient, entropy, Number of Pixels Change Rate (NPCR), contrast, energy, homogeneity confirm the superiority of the proposed light-weight encryption scheme.
Immersive augmented reality (AR) technologies are becoming a reality. Prior works have identified security and privacy risks raised by these technologies, primarily considering individual users or AR devices. However, we make two key observations: (1) users will not always use AR in isolation, but also in ecosystems of other users, and (2) since immersive AR devices have only recently become available, the risks of AR have been largely hypothetical to date. To provide a foundation for understanding and addressing the security and privacy challenges of emerging AR technologies, grounded in the experiences of real users, we conduct a qualitative lab study with an immersive AR headset, the Microsoft HoloLens. We conduct our study in pairs - 22 participants across 11 pairs - wherein participants engage in paired and individual (but physically co-located) HoloLens activities. Through semi-structured interviews, we explore participants' security, privacy, and other concerns, raising key findings. For example, we find that despite the HoloLens's limitations, participants were easily immersed, treating virtual objects as real (e.g., stepping around them for fear of tripping). We also uncover numerous security, privacy, and safety concerns unique to AR (e.g., deceptive virtual objects misleading users about the real world), and a need for access control among users to manage shared physical spaces and virtual content embedded in those spaces. Our findings give us the opportunity to identify broader lessons and key challenges to inform the design of emerging single-and multi-user AR technologies.