Visible to the public Biblio

Filters: Keyword is sketch-based image retrieval  [Clear All Filters]
2018-11-19
Guo, Longteng, Liu, Jing, Wang, Yuhang, Luo, Zhonghua, Wen, Wei, Lu, Hanqing.  2017.  Sketch-Based Image Retrieval Using Generative Adversarial Networks. Proceedings of the 25th ACM International Conference on Multimedia. :1267–1268.

For sketch-based image retrieval (SBIR), we propose a generative adversarial network trained on a large number of sketches and their corresponding real images. To imitate human search process, we attempt to match candidate images with theimaginary image in user single s mind instead of the sketch query, i.e., not only the shape information of sketches but their possible content information are considered in SBIR. Specifically, a conditional generative adversarial network (cGAN) is employed to enrich the content information of sketches and recover the imaginary images, and two VGG-based encoders, which work on real and imaginary images respectively, are used to constrain their perceptual consistency from the view of feature representations. During SBIR, we first generate an imaginary image from a given sketch via cGAN, and then take the output of the learned encoder for imaginary images as the feature of the query sketch. Finally, we build an interactive SBIR system that shows encouraging performance.