Biblio
With the objective to eliminate the input current sensor in a totem-pole boost power factor corrector (PFC) for its low-cost design, a novel discretized sampling-based robust control scheme is proposed in this work. The proposed control methodology proves to be beneficial due to its ease of implementation and its ability to support high-frequency operation, while being able to eliminate one sensor and, thus, enhancing reliability and cost-effectiveness. In addition, detailed closed-loop stability analysis is carried out for the controller in discrete domain to ascertain brisk dynamic operation when subjected to sudden load fluctuations. To establish the robustness of the proposed control scheme, a detailed sensitivity analysis of the closed-loop performance metrics with respect to undesired changes and inherent uncertainty in system parameters is presented in this article. A comparison with the state-of-the-art (SOA) methods is provided, and conclusive results in terms of better dynamic performance are also established. To verify and elaborate on the specifics of the proposed scheme, a detailed simulation study is conducted, and the results show 25% reduction in response time as compared to SOA approaches. A 500-W boost PFC prototype is developed and tested with the proposed control scheme to evaluate and benchmark the system steady-state and dynamic performance. A total harmonic distortion of 1.68% is obtained at the rated load with a resultant power factor of 0.998 (lag), which proves the effectiveness and superiority of the proposed control scheme.
Conference Name: IEEE Journal of Emerging and Selected Topics in Industrial Electronics
This paper presents a new micro-architectural vulnerability on the power management units of modern computers which creates an electromagnetic-based side-channel. The key observations that enable us to discover this sidechannel are: 1) in an effort to manage and minimize power consumption, modern microprocessors have a number of possible operating modes (power states) in which various sub-systems of the processor are powered down, 2) for some of the transitions between power states, the processor also changes the operating mode of the voltage regulator module (VRM) that supplies power to the affected sub-system, and 3) the electromagnetic (EM) emanations from the VRM are heavily dependent on its operating mode. As a result, these state-dependent EM emanations create a side-channel which can potentially reveal sensitive information about the current state of the processor and, more importantly, the programs currently being executed. To demonstrate the feasibility of exploiting this vulnerability, we create a covert channel by utilizing the changes in the processor's power states. We show how such a covert channel can be leveraged to exfiltrate sensitive information from a secured and completely isolated (air-gapped) laptop system by placing a compact, inexpensive receiver in proximity to that system. To further show the severity of this attack, we also demonstrate how such a covert channel can be established when the target and the receiver are several meters away from each other, including scenarios where the receiver and the target are separated by a wall. Compared to the state-of-the-art, the proposed covert channel has \textbackslashtextgreater3x higher bit-rate. Finally, to demonstrate that this new vulnerability is not limited to being used as a covert channel, we demonstrate how it can be used for attacks such as keystroke logging.
In this paper, the cybersecurity of distributed secondary voltage control of AC microgrids is addressed. A resilient approach is proposed to mitigate the negative impacts of cyberthreats on the voltage and reactive power control of Distributed Energy Resources (DERs). The proposed secondary voltage control is inspired by the resilient flocking of a mobile robot team. This approach utilizes a virtual time-varying communication graph in which the quality of the communication links is virtualized and determined based on the synchronization behavior of DERs. The utilized control protocols on DERs ensure that the connectivity of the virtual communication graph is above a specific resilience threshold. Once the resilience threshold is satisfied the Weighted Mean Subsequence Reduced (WMSR) algorithm is applied to satisfy voltage restoration in the presence of malicious adversaries. A typical microgrid test system including 6 DERs is simulated to verify the validity of proposed resilient control approach.
This paper proposes a distributed fixed-time based secondary controller for the DC microgrids (MGs) to overcome the drawbacks of conventional droop control. The controller, based on a distributed fixed-time control approach, can remove the DC voltage deviation and provide proportional current sharing simultaneously within a fixed-time. Comparing with the conventional centralized secondary controller, the controller, using the dynamic consensus, on each converter communicates only with its neighbors on a communication graph which increases the convergence speed and gets an improved performance. The proposed control strategy is simulated in PLECS to test the controller performance, link-failure resiliency, plug and play capability and the feasibility under different time delays.
With the tighter integration of power system and Information and Communication Technology (ICT), power grid is becoming a typical cyber physical system (CPS). It is important to analyze the impact of the cyber event on power system, so that it is necessary to build a co-simulation system for studying the interaction between power system and ICT. In this paper, a cyber physical power system (CPPS) co-simulation platform is proposed, which includes the hardware-in-the-loop (HIL) simulation function. By using flexible interface, various simulation software for power system and ICT can be interconnected into the platform to build co-simulation tools for various simulation purposes. To demonstrate it as a proof, one simulation framework for real life cyber-attack on power system control is introduced. In this case, the real life denial-of-service attack on a router in automatic voltage control (AVC) is simulated to demonstrate impact of cyber-attack on power system.
The three-phase grid-connected converter control strategy, which applies to the battery energy storage system, generally ignores the interference of harmonic components in the grid voltage. As a result, it is difficult to meet the practical application requirements. To deal with this problem, it is necessary to optimize and improve the traditional control strategy, taking harmonics into consideration. And its bases are analysis of the harmonic characteristics and study of its control mechanism in the grid-connected converter. This paper proposes a method of harmonic decomposition, classifies the grid voltage harmonics and explores the control mechanism in the grid-connected converter. With the help of the simulation model built by Matlab/Simulink, the comparative simulation of the energy storage control system carried out under the control of the ideal grid voltage input and the actual one, verifies the correctness of the analytical method proposed in the article.
Aiming at the composite uncertainty characteristics and high-dimensional data stream characteristics of the evaluation index with both ambiguity and randomness, this paper proposes a emergency severity assessment method for cluster supply chain based on cloud fuzzy clustering algorithm. The summary cloud model generation algorithm is created. And the multi-data fusion method is applied to the cloud model processing of the evaluation indexes for high-dimensional data stream with ambiguity and randomness. The synopsis data of the emergency severity assessment indexes are extracted. Based on time attenuation model and sliding window model, the data stream fuzzy clustering algorithm for emergency severity assessment is established. The evaluation results are rationally optimized according to the generalized Euclidean distances of the cluster centers and cluster microcluster weights, and the severity grade of cluster supply chain emergency is dynamically evaluated. The experimental results show that the proposed algorithm improves the clustering accuracy and reduces the operation time, as well as can provide more accurate theoretical support for the early warning decision of cluster supply chain emergency.