Visible to the public Biblio

Filters: Keyword is Stochastic Process  [Clear All Filters]
2022-10-20
Al-Haija, Qasem Abu.  2021.  On the Security of Cyber-Physical Systems Against Stochastic Cyber-Attacks Models. 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS). :1—6.
Cyber Physical Systems (CPS) are widely deployed and employed in many recent real applications such as automobiles with sensing technology for crashes to protect passengers, automated homes with various smart appliances and control units, and medical instruments with sensing capability of glucose levels in blood to keep track of normal body function. In spite of their significance, CPS infrastructures are vulnerable to cyberattacks due to the limitations in the computing, processing, memory, power, and transmission capabilities for their endpoint/edge appliances. In this paper, we consider a short systematic investigation for the models and techniques of cyberattacks and threats rate against Cyber Physical Systems with multiple subsystems and redundant elements such as, network of computing devices or storage modules. The cyberattacks are assumed to be externally launched against the Cyber Physical System during a prescribed operational time unit following stochastic distribution models such as Poisson probability distribution, negative-binomial probability distribution and other that have been extensively employed in the literature and proved their efficiency in modeling system attacks and threats.
2022-07-12
Khanzadi, Pouria, Kordnoori, Shirin, Vasigh, Zahra, Mostafaei, Hamidreza, Akhtarkavan, Ehsan.  2021.  A Cyber Physical System based Stochastic Process Language With NuSMV Model Checker. 2021 International Conference on Intelligent Technology, System and Service for Internet of Everything (ITSS-IoE). :1—8.
Nowadays, cyber physical systems are playing an important role in human life in which they provide features that make interactions between human and machine easier. To design and analysis such systems, the main problem is their complexity. In this paper, we propose a description language for cyber physical systems based on stochastic processes. The proposed language is called SPDL (Stochastic Description Process Language). For designing SPDL, two main parts are considered for Cyber Physical Systems (CSP): embedded systems and physical environment. Then these parts are defined as stochastic processes and CPS is defined as a tuple. Syntax and semantics of SPDL are stated based on the proposed definition. Also, the semantics are defined as by set theory. For implementation of SPDL, dependencies between words of a requirements are extracted as a tree data structure. Based on the dependencies, SPDL is used for describing the CPS. Also, a lexical analyzer and a parser based on a defined BNF grammar for SPDL is designed and implemented. Finally, SPDL of CPS is transformed to NuSMV which is a symbolic model checker. The Experimental results show that SPDL is capable of describing cyber physical systems by natural language.
2019-02-22
Nie, J., Tang, H., Wei, J..  2018.  Analysis on Convergence of Stochastic Processes in Cloud Computing Models. 2018 14th International Conference on Computational Intelligence and Security (CIS). :71-76.
On cloud computing systems consisting of task queuing and resource allocations, it is essential but hard to model and evaluate the global performance. In most of the models, researchers use a stochastic process or several stochastic processes to describe a real system. However, due to the absence of theoretical conclusions of any arbitrary stochastic processes, they approximate the complicated model into simple processes that have mathematical results, such as Markov processes. Our purpose is to give a universal method to deal with common stochastic processes as long as the processes can be expressed in the form of transition matrix. To achieve our purpose, we firstly prove several theorems about the convergence of stochastic matrices to figure out what kind of matrix-defined systems has steady states. Furthermore, we propose two strategies for measuring the rate of convergence which reflects how fast the system would come to its steady state. Finally, we give a method for reducing a stochastic matrix into smaller ones, and perform some experiments to illustrate our strategies in practice.
2015-05-06
Arora, D., Verigin, A., Godkin, T., Neville, S.W..  2014.  Statistical Assessment of Sybil-Placement Strategies within DHT-Structured Peer-to-Peer Botnets. Advanced Information Networking and Applications (AINA), 2014 IEEE 28th International Conference on. :821-828.

Botnets are a well recognized global cyber-security threat as they enable attack communities to command large collections of compromised computers (bots) on-demand. Peer to-peer (P2P) distributed hash tables (DHT) have become particularly attractive botnet command and control (C & C) solutions due to the high level resiliency gained via the diffused random graph overlays they produce. The injection of Sybils, computers pretending to be valid bots, remains a key defensive strategy against DHT-structured P2P botnets. This research uses packet level network simulations to explore the relative merits of random, informed, and partially informed Sybil placement strategies. It is shown that random placements perform nearly as effectively as the tested more informed strategies, which require higher levels of inter-defender co-ordination. Moreover, it is shown that aspects of the DHT-structured P2P botnets behave as statistically nonergodic processes, when viewed from the perspective of stochastic processes. This suggests that although optimal Sybil placement strategies appear to exist they would need carefully tuning to each specific P2P botnet instance.

2015-05-01
Chiaradonna, S., Di Giandomenico, F., Murru, N..  2014.  On a Modeling Approach to Analyze Resilience of a Smart Grid Infrastructure. Dependable Computing Conference (EDCC), 2014 Tenth European. :166-177.

The evolution of electrical grids, both in terms of enhanced ICT functionalities to improve efficiency, reliability and economics, as well as the increasing penetration of renewable redistributed energy resources, results in a more sophisticated electrical infrastructure which poses new challenges from several perspectives, including resilience and quality of service analysis. In addition, the presence of interdependencies, which more and more characterize critical infrastructures (including the power sector), exacerbates the need for advanced analysis approaches, to be possibly employed since the early phases of the system design, to identify vulnerabilities and appropriate countermeasures. In this paper, we outline an approach to model and analyze smart grids and discuss the major challenges to be addressed in stochastic model-based analysis to account for the peculiarities of the involved system elements. Representation of dynamic and flexible behavior of generators and loads, as well as representation of the complex ICT control functions required to preserve and/or re-establish electrical equilibrium in presence of changes need to be faced to assess suitable indicators of the resilience and quality of service of the smart grid.