Biblio
Botnets are a well recognized global cyber-security threat as they enable attack communities to command large collections of compromised computers (bots) on-demand. Peer to-peer (P2P) distributed hash tables (DHT) have become particularly attractive botnet command and control (C & C) solutions due to the high level resiliency gained via the diffused random graph overlays they produce. The injection of Sybils, computers pretending to be valid bots, remains a key defensive strategy against DHT-structured P2P botnets. This research uses packet level network simulations to explore the relative merits of random, informed, and partially informed Sybil placement strategies. It is shown that random placements perform nearly as effectively as the tested more informed strategies, which require higher levels of inter-defender co-ordination. Moreover, it is shown that aspects of the DHT-structured P2P botnets behave as statistically nonergodic processes, when viewed from the perspective of stochastic processes. This suggests that although optimal Sybil placement strategies appear to exist they would need carefully tuning to each specific P2P botnet instance.
The evolution of electrical grids, both in terms of enhanced ICT functionalities to improve efficiency, reliability and economics, as well as the increasing penetration of renewable redistributed energy resources, results in a more sophisticated electrical infrastructure which poses new challenges from several perspectives, including resilience and quality of service analysis. In addition, the presence of interdependencies, which more and more characterize critical infrastructures (including the power sector), exacerbates the need for advanced analysis approaches, to be possibly employed since the early phases of the system design, to identify vulnerabilities and appropriate countermeasures. In this paper, we outline an approach to model and analyze smart grids and discuss the major challenges to be addressed in stochastic model-based analysis to account for the peculiarities of the involved system elements. Representation of dynamic and flexible behavior of generators and loads, as well as representation of the complex ICT control functions required to preserve and/or re-establish electrical equilibrium in presence of changes need to be faced to assess suitable indicators of the resilience and quality of service of the smart grid.