Visible to the public Biblio

Filters: Keyword is end-to-end network  [Clear All Filters]
2020-10-05
Chen, Jen-Jee, Tsai, Meng-Hsun, Zhao, Liqiang, Chang, Wei-Chiao, Lin, Yu-Hsiang, Zhou, Qianwen, Lu, Yu-Zhang, Tsai, Jia-Ling, Cai, Yun-Zhan.  2019.  Realizing Dynamic Network Slice Resource Management based on SDN networks. 2019 International Conference on Intelligent Computing and its Emerging Applications (ICEA). :120–125.
It is expected that the concept of Internet of everything will be realized in 2020 because of the coming of the 5G wireless communication technology. Internet of Things (IoT) services in various fields require different types of network service features, such as mobility, security, bandwidth, latency, reliability and control strategies. In order to solve the complex requirements and provide customized services, a new network architecture is needed. To change the traditional control mode used in the traditional network architecture, the Software Defined Network (SDN) is proposed. First, SDN divides the network into the Control Plane and Data Plane and then delegates the network management authority to the controller of the control layer. This allows centralized control of connections of a large number of devices. Second, SDN can help realizing the network slicing in the aspect of network layer. With the network slicing technology proposed by 5G, it can cut the 5G network out of multiple virtual networks and each virtual network is to support the needs of diverse users. In this work, we design and develop a network slicing framework. The contributions of this article are two folds. First, through SDN technology, we develop to provide the corresponding end-to-end (E2E) network slicing for IoT applications with different requirements. Second, we develop a dynamic network slice resource scheduling and management method based on SDN to meet the services' requirements with time-varying characteristics. This is usually observed in streaming and services with bursty traffic. A prototyping system is completed. The effectiveness of the system is demonstrated by using an electronic fence application as a use case.
2018-11-19
Chen, D., Liao, J., Yuan, L., Yu, N., Hua, G..  2017.  Coherent Online Video Style Transfer. 2017 IEEE International Conference on Computer Vision (ICCV). :1114–1123.

Training a feed-forward network for the fast neural style transfer of images has proven successful, but the naive extension of processing videos frame by frame is prone to producing flickering results. We propose the first end-to-end network for online video style transfer, which generates temporally coherent stylized video sequences in near realtime. Two key ideas include an efficient network by incorporating short-term coherence, and propagating short-term coherence to long-term, which ensures consistency over a longer period of time. Our network can incorporate different image stylization networks and clearly outperforms the per-frame baseline both qualitatively and quantitatively. Moreover, it can achieve visually comparable coherence to optimization-based video style transfer, but is three orders of magnitude faster.