Visible to the public Biblio

Filters: Keyword is load shedding  [Clear All Filters]
2023-05-19
Pan, Aiqiang, Fang, Xiaotao, Yan, Zheng, Dong, Zhen, Xu, Xiaoyuan, Wang, Han.  2022.  Risk-Based Power System Resilience Assessment Considering the Impacts of Hurricanes. 2022 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia). :1714—1718.
In this paper, a novel method is proposed to assess the power system resilience considering the impacts of hurricanes. Firstly, the transmission line outage model correlated to wind speed is developed. Then, Probability Load Flow (PLF) considering the random outage of lines and the variation of loads is designed, and Latin Hypercube Sampling (LHS) is used to improve the efficiency of Monte Carlo Simulation (MCS) in solving PLF. Moreover, risk indices, including line overloading, node voltage exceeding limit, load shedding and system collapse, are established to assess the resilience of power systems during hurricanes. The method is tested with a modified IEEE 14-bus system, and simulation results indicate the effectiveness of the proposed approach.
2022-02-04
Zadsar, Masoud, Abazari, Ahmadreza, Ansari, Mostafa, Ghafouri, Mohsen, Muyeen, S. M., Blaabjerg, Frede.  2021.  Central Situational Awareness System for Resiliency Enhancement of Integrated Energy Systems. 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON). :1–6.
In integrated gas and electricity energy systems, a catastrophic outage in one system could propagate to other, resulting in severe service interruption like what happened in 2021 Texas Blackout. To alleviate detrimental effects of these events, a coordinated effort must be adopted between integrated energy systems. In this paper, a central situational awareness system (CSAS) is developed to improve the coordination of operational resiliency measures by facilitating information sharing between power distribution systems (PDSs) and natural gas networks (NGNs) during emergency conditions. The CSAS collects operational data of the PDS and the NGN as well as data of upcoming weather condition, extracts the most vulnerable lines and pipelines, and accordingly obtains emergency actions. The emergency actions, i.e., optimal multi-microgrid formation, scheduling of distribution energy resources (DERs), and optimal electrical and gas load shedding plan, are optimized through a coupled graph-based approach with stochastic mixed integer linear programming (MILP) model. In the proposed model, uncertainties of renewable energy resources (RESs) is also considered. Numerical results on an integrated IEEE 33-bus and 30-node NGNs demonstrate the effectiveness of proposed CSAS.
2020-12-11
Han, Y., Zhang, W., Wei, J., Liu, X., Ye, S..  2019.  The Study and Application of Security Control Plan Incorporating Frequency Stability (SCPIFS) in CPS-Featured Interconnected Asynchronous Grids. 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia). :349—354.

The CPS-featured modern asynchronous grids interconnected with HVDC tie-lines facing the hazards from bulk power imbalance shock. With the aid of cyber layer, the SCPIFS incorporates the frequency stability constrains is put forwarded. When there is bulk power imbalance caused by HVDC tie-lines block incident or unplanned loads increasing, the proposed SCPIFS ensures the safety and frequency stability of both grids at two terminals of the HVDC tie-line, also keeps the grids operate economically. To keep frequency stability, the controllable variables in security control strategy include loads, generators outputs and the power transferred in HVDC tie-lines. McCormick envelope method and ADMM are introduced to solve the proposed SCPIFS optimization model. Case studies of two-area benchmark system verify the safety and economical benefits of the SCPFS. HVDC tie-line transferred power can take the advantage of low cost generator resource of both sides utmost and avoid the load shedding via tuning the power transferred through the operating tie-lines, thus the operation of both connected asynchronous grids is within the limit of frequency stability domain.

2020-04-24
Shuvro, Rezoan A., Das, Pankaz, Hayat, Majeed M., Talukder, Mitun.  2019.  Predicting Cascading Failures in Power Grids using Machine Learning Algorithms. 2019 North American Power Symposium (NAPS). :1—6.
Although there has been notable progress in modeling cascading failures in power grids, few works included using machine learning algorithms. In this paper, cascading failures that lead to massive blackouts in power grids are predicted and classified into no, small, and large cascades using machine learning algorithms. Cascading-failure data is generated using a cascading failure simulator framework developed earlier. The data set includes the power grid operating parameters such as loading level, level of load shedding, the capacity of the failed lines, and the topological parameters such as edge betweenness centrality and the average shortest distance for numerous combinations of two transmission line failures as features. Then several machine learning algorithms are used to classify cascading failures. Further, linear regression is used to predict the number of failed transmission lines and the amount of load shedding during a cascade based on initial feature values. This data-driven technique can be used to generate cascading failure data set for any real-world power grids and hence, power-grid engineers can use this approach for cascade data generation and hence predicting vulnerabilities and enhancing robustness of the grid.
2020-01-20
Ajaei, F. Badrkhani, Mohammadi, J., Stevens, G., Akhavan, E..  2019.  Hybrid AC/DC Microgrid Configurations for a Net-Zero Energy Community. 2019 IEEE/IAS 55th Industrial and Commercial Power Systems Technical Conference (I CPS). :1–7.

The hybrid microgrid is attracting great attention in recent years as it combines the main advantages of the alternating current (AC) and direct current (DC) microgrids. It is one of the best candidates to support a net-zero energy community. Thus, this paper investigates and compares different hybrid AC/DC microgrid configurations that are suitable for a net-zero energy community. Four different configurations are compared with each other in terms of their impacts on the overall system reliability, expandability, load shedding requirements, power sharing issues, net-zero energy capability, number of the required interface converters, and the requirement of costly medium-voltage components. The results of the investigations indicate that the best results are achieved when each building is enabled to supply its critical loads using an independent AC microgrid that is interfaced to the DC microgrid through a dedicated interface converter.

2018-05-09
Tsujii, Y., Kawakita, K. E., Kumagai, M., Kikuchi, A., Watanabe, M..  2017.  State Estimation Error Detection System for Online Dynamic Security Assessment. 2017 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.

Online Dynamic Security Assessment (DSA) is a dynamical system widely used for assessing and analyzing an electrical power system. The outcomes of DSA are used in many aspects of the operation of power system, from monitoring the system to determining remedial action schemes (e.g. the amount of generators to be shed at the event of a fault). Measurement from supervisory control and data acquisition (SCADA) and state estimation (SE) results are the inputs for online-DSA, however, the SE error, caused by sudden change in power flow or low convergence rate, could be unnoticed and skew the outcome. Therefore, generator shedding scheme cannot achieve optimum but must have some margin because we don't know how SE error caused by these problems will impact power system stability control. As a method for solving the problem, we developed SE error detection system (EDS), which is enabled by detecting the SE error that will impact power system transient stability. The method is comparing a threshold value and an index calculated by the difference between SE results and PMU observation data, using the distance from the fault point and the power flow value. Using the index, the reliability of the SE results can be verified. As a result, online-DSA can use the SE results while avoiding the bad SE results, assuring the outcome of the DSA assessment and analysis, such as the amount of generator shedding in order to prevent the power system's instability.

2015-05-01
Yingmeng Xiang, Lingfeng Wang, Yichi Zhang.  2014.  Power system adequacy assessment with probabilistic cyber attacks against breakers. PES General Meeting | Conference Exposition, 2014 IEEE. :1-5.

Modern power systems heavily rely on the associated cyber network, and cyber attacks against the control network may cause undesired consequences such as load shedding, equipment damage, and so forth. The behaviors of the attackers can be random, thus it is crucial to develop novel methods to evaluate the adequacy of the power system under probabilistic cyber attacks. In this study, the external and internal cyber structures of the substation are introduced, and possible attack paths against the breakers are analyzed. The attack resources and vulnerability factors of the cyber network are discussed considering their impacts on the success probability of a cyber attack. A procedure integrating the reliability of physical components and the impact of cyber attacks against breakers are proposed considering the behaviors of the physical devices and attackers. Simulations are conducted based on the IEEE RTS79 system. The impact of the attack resources and attack attempt numbers are analyzed for attackers from different threats groups. It is concluded that implementing effective cyber security measures is crucial to the cyber-physical power grids.