Visible to the public Biblio

Filters: Keyword is false negative rate  [Clear All Filters]
2021-09-07
Zhang, Xing, Cui, Xiaotong, Cheng, Kefei, Zhang, Liang.  2020.  A Convolutional Encoder Network for Intrusion Detection in Controller Area Networks. 2020 16th International Conference on Computational Intelligence and Security (CIS). :366–369.
Integrated with various electronic control units (ECUs), vehicles are becoming more intelligent with the assistance of essential connections. However, the interaction with the outside world raises great concerns on cyber-attacks. As a main standard for in-vehicle network, Controller Area Network (CAN) does not have any built-in security mechanisms to guarantee a secure communication. This increases risks of denial of service, remote control attacks by an attacker, posing serious threats to underlying vehicles, property and human lives. As a result, it is urgent to develop an effective in-vehicle network intrusion detection system (IDS) for better security. In this paper, we propose a Feature-based Sliding Window (FSW) to extract the feature of CAN Data Field and CAN IDs. Then we construct a convolutional encoder network (CEN) to detect network intrusion of CAN networks. The proposed FSW-CEN method is evaluated on real-world datasets. The experimental results show that compared to traditional data processing methods and convolutional neural networks, our method is able to detect attacks with a higher accuracy in terms of detection accuracy and false negative rate.
2020-09-28
Liu, Kai, Zhou, Yun, Wang, Qingyong, Zhu, Xianqiang.  2019.  Vulnerability Severity Prediction With Deep Neural Network. 2019 5th International Conference on Big Data and Information Analytics (BigDIA). :114–119.
High frequency of network security incidents has also brought a lot of negative effects and even huge economic losses to countries, enterprises and individuals in recent years. Therefore, more and more attention has been paid to the problem of network security. In order to evaluate the newly included vulnerability text information accurately, and to reduce the workload of experts and the false negative rate of the traditional method. Multiple deep learning methods for vulnerability text classification evaluation are proposed in this paper. The standard Cross Site Scripting (XSS) vulnerability text data is processed first, and then classified using three kinds of deep neural networks (CNN, LSTM, TextRCNN) and one kind of traditional machine learning method (XGBoost). The dropout ratio of the optimal CNN network, the epoch of all deep neural networks and training set data were tuned via experiments to improve the fit on our target task. The results show that the deep learning methods evaluate vulnerability risk levels better, compared with traditional machine learning methods, but cost more time. We train our models in various training sets and test with the same testing set. The performance and utility of recurrent convolutional neural networks (TextRCNN) is highest in comparison to all other methods, which classification accuracy rate is 93.95%.
2019-08-05
Kaiafas, G., Varisteas, G., Lagraa, S., State, R., Nguyen, C. D., Ries, T., Ourdane, M..  2018.  Detecting Malicious Authentication Events Trustfully. NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium. :1-6.

Anomaly detection on security logs is receiving more and more attention. Authentication events are an important component of security logs, and being able to produce trustful and accurate predictions minimizes the effort of cyber-experts to stop false attacks. Observed events are classified into Normal, for legitimate user behavior, and Malicious, for malevolent actions. These classes are consistently excessively imbalanced which makes the classification problem harder; in the commonly used Los Alamos dataset, the malicious class comprises only 0.00033% of the total. This work proposes a novel method to extract advanced composite features, and a supervised learning technique for classifying authentication logs trustfully; the models are Random Forest, LogitBoost, Logistic Regression, and ultimately Majority Voting which leverages the predictions of the previous models and gives the final prediction for each authentication event. We measure the performance of our experiments by using the False Negative Rate and False Positive Rate. In overall we achieve 0 False Negative Rate (i.e. no attack was missed), and on average a False Positive Rate of 0.0019.

2018-11-28
Yin, Khin Swe, Khine, May Aye.  2017.  Network Behavioral Features for Detecting Remote Access Trojans in the Early Stage. Proceedings of the 2017 VI International Conference on Network, Communication and Computing. :92–96.

Nowadays data is always stored in a computer in the hyper-connected world and, a company or an organization or a person can come across financial loss, reputation loss, business disruption and intellectual property loss because of data leakage or data disclosure. Remote Access Trojans are used to invade a victim's PC and collect information from it. There have been signatures for these that have already emerged and defined as malwares, but there is no available signature yet if a malware or a remote access Trojan is a zero-day threat. In this circumstance network behavioral analysis is more useful than signature-based anti-virus scanners in order to detect the different behavior of malware. When the traffic will be cut or stoppedis important in capturing network traffic. In this paper, effective features for detecting RATs are proposed. These features are extracted from the first twenty packets. Our approach achieves 98% accuracy and 10% false negative rate by random forest algorithm.