Visible to the public Biblio

Filters: Keyword is Garbage Collection  [Clear All Filters]
2020-02-26
Tran, Geoffrey Phi, Walters, John Paul, Crago, Stephen.  2019.  Increased Fault-Tolerance and Real-Time Performance Resiliency for Stream Processing Workloads through Redundancy. 2019 IEEE International Conference on Services Computing (SCC). :51–55.

Data analytics and telemetry have become paramount to monitoring and maintaining quality-of-service in addition to business analytics. Stream processing-a model where a network of operators receives and processes continuously arriving discrete elements-is well-suited for these needs. Current and previous studies and frameworks have focused on continuity of operations and aggregate performance metrics. However, real-time performance and tail latency are also important. Timing errors caused by either performance or failed communication faults also affect real-time performance more drastically than aggregate metrics. In this paper, we introduce redundancy in the stream data to improve the real-time performance and resiliency to timing errors caused by either performance or failed communication faults. We also address limitations in previous solutions using a fine-grained acknowledgment tracking scheme to both increase the effectiveness for resiliency to performance faults and enable effectiveness for failed communication faults. Our results show that fine-grained acknowledgment schemes can improve the tail and mean latencies by approximately 30%. We also show that these schemes can improve resiliency to performance faults compared to existing work. Our improvements result in 47.4% to 92.9% fewer missed deadlines compared to 17.3% to 50.6% for comparable topologies and redundancy levels in the state of the art. Finally, we show that redundancies of 25% to 100% can reduce the number of data elements that miss their deadline constraints by 0.76% to 14.04% for applications with high fan-out and by 7.45% up to 50% for applications with no fan-out.

2018-12-10
Maas, Martin, Asanović, Krste, Kubiatowicz, John.  2017.  Return of the Runtimes: Rethinking the Language Runtime System for the Cloud 3.0 Era. Proceedings of the 16th Workshop on Hot Topics in Operating Systems. :138–143.
The public cloud is moving to a Platform-as-a-Service model where services such as data management, machine learning or image classification are provided by the cloud operator while applications are written in high-level languages and leverage these services. Managed languages such as Java, Python or Scala are widely used in this setting. However, while these languages can increase productivity, they are often associated with problems such as unpredictable garbage collection pauses or warm-up overheads. We argue that the reason for these problems is that current language runtime systems were not initially designed for the cloud setting. To address this, we propose seven tenets for designing future language runtime systems for cloud data centers. We then outline the design of a general substrate for building such runtime systems, based on these seven tenets.