Biblio
Explainability and accuracy of the machine learning algorithms usually laid on a trade-off relationship. Several algorithms such as deep-learning artificial neural networks have high accuracy but low explainability. Since there were only limited ways to access the learning and prediction processes in algorithms, researchers and users were not able to understand how the results were given to them. However, a recent project, explainable artificial intelligence (XAI) by DARPA, showed that AI systems can be highly explainable but also accurate. Several technical reports of XAI suggested ways of extracting explainable features and their positive effects on users; the results showed that explainability of AI was helpful to make users understand and trust the system. However, only a few studies have addressed why the explainability can bring positive effects to users. We suggest theoretical reasons from the attribution theory and anthropomorphism studies. Trough a review, we develop three hypotheses: (1) causal attribution is a human nature and thus a system which provides casual explanation on their process will affect users to attribute the result of system; (2) Based on the attribution results, users will perceive the system as human-like and which will be a motivation of anthropomorphism; (3) The system will be perceived by the users through the anthropomorphism. We provide a research framework for designing causal explainability of an AI system and discuss the expected results of the research.