Biblio
Internet of Things (IoT) will be emerged over many of devices that are dynamically networked. Because of distributed and dynamic nature of IoT, designing a recommender system for them is a challenging problem. Recently, cognitive systems are used to design modern frameworks in different types of computer applications such as cognitive radio networks and cognitive peer-to-peer networks. A cognitive system can learn to improve its performance while operating under its unknown environment. In this paper, we propose a framework for cognitive recommender systems in IoT. To the best of our knowledge, there is no recommender system based on cognitive systems in the IoT. The proposed algorithm is compared with the existing recommender systems.
This publication presents some techniques for insider threats and cryptographic protocols in secure processes. Those processes are dedicated to the information management of strategic data splitting. Strategic data splitting is dedicated to enterprise management processes as well as methods of securely storing and managing this type of data. Because usually strategic data are not enough secure and resistant for unauthorized leakage, we propose a new protocol that allows to protect data in different management structures. The presented data splitting techniques will concern cryptographic information splitting algorithms, as well as data sharing algorithms making use of cognitive data analysis techniques. The insider threats techniques will concern data reconstruction methods and cognitive data analysis techniques. Systems for the semantic analysis and secure information management will be used to conceal strategic information about the condition of the enterprise. Using the new approach, which is based on cognitive systems allow to guarantee the secure features and make the management processes more efficient.
Techno-stress has been a problem in recent years with a development of information technology. Various studies have been reported about a relationship between key typing and psychosomatic state. Keystroke dynamics are known as dynamics of a key typing motion. The objective of this paper is to clarify the mechanism between keystroke dynamics and physiological responses. Inter-stroke time (IST) that was the interval between each keystroke was measured as keystroke dynamics. The physiological responses were heart rate variability (HRV) and respiration (Resp). The system consisted of IST, HRV, and Resp was applied multidimensional directed coherence in order to reveal a causal correlation. As a result, it was observed that strength of entrainment of physiological responses having fluctuation to IST differed in surround by the noise and a cognitive load. Specifically, the entrainment became weak as a cognitive resource devoted to IST was relatively increased with the keystroke motion had a robust rhythm. On the other hand, the entrainment became stronger as a cognitive resource devoted to IST was relatively decreased since the resource also devoted to the noise or the cognitive load.
Today's more reliable communication technology, together with the availability of higher computational power, have paved the way for introduction of more advanced automation systems based on distributed intelligence and multi-agent technology. However, abundance of data, while making these systems more powerful, can at the same time act as their biggest vulnerability. In a web of interconnected devices and components functioning within an automation framework, potential impact of malfunction in a single device, either through internal failure or external damage/intrusion, may lead to detrimental side-effects spread across the whole underlying system. The potentially large number of devices, along with their inherent interrelations and interdependencies, may hinder the ability of human operators to interpret events, identify their scope of impact and take remedial actions if necessary. Through utilization of the concepts of graph-theoretic fuzzy cognitive maps (FCM) and expert systems, this paper puts forth a solution that is able to reveal weak links and vulnerabilities of an automation system, should it become exposed to partial internal failure or external damage. A case study has been performed on the IEEE 34-bus test distribution system to show the efficiency of the proposed scheme.