Biblio
Avoiding security vulnerabilities is very important for embedded systems. Dynamic Information Flow Tracking (DIFT) is a powerful technique to analyze SW with respect to security policies in order to protect the system against a broad range of security related exploits. However, existing DIFT approaches either do not exist for Virtual Prototypes (VPs) or fail to model complex hardware/software interactions.In this paper, we present a novel approach that enables early and accurate DIFT of binaries targeting embedded systems with custom peripherals. Leveraging the SystemC framework, our DIFT engine tracks accurate data flow information alongside the program execution to detect violations of security policies at run-time. We demonstrate the effectiveness and applicability of our approach by extensive experiments.
This talk will cover two topics, namely, modeling and design of Moving Target Defense (MTD), and DIFT games for modeling Advanced Persistent Threats (APTs). We will first present a game-theoretic approach to characterizing the trade-off between resource efficiency and defense effectiveness in decoy- and randomization-based MTD. We will then address the game formulation for APTs. APTs are mounted by intelligent and resourceful adversaries who gain access to a targeted system and gather information over an extended period of time. APTs consist of multiple stages, including initial system compromise, privilege escalation, and data exfiltration, each of which involves strategic interaction between the APT and the targeted system. While this interaction can be viewed as a game, the stealthiness, adaptiveness, and unpredictability of APTs imply that the information structure of the game and the strategies of the APT are not readily available. Our approach to modeling APTs is based on the insight that the persistent nature of APTs creates information flows in the system that can be monitored. One monitoring mechanism is Dynamic Information Flow Tracking (DIFT), which taints and tracks malicious information flows through a system and inspects the flows at designated traps. Since tainting all flows in the system will incur significant memory and storage overhead, efficient tagging policies are needed to maximize the probability of detecting the APT while minimizing resource costs. In this work, we develop a multi-stage stochastic game framework for modeling the interaction between an APT and a DIFT, as well as designing an efficient DIFT-based defense. Our model is grounded on APT data gathered using the Refinable Attack Investigation (RAIN) flow-tracking framework. We present the current state of our formulation, insights that it provides on designing effective defenses against APTs, and directions for future work.