Visible to the public Biblio

Filters: Keyword is TurtleBot  [Clear All Filters]
2023-03-06
Mainampati, Manasa, Chandrasekaran, Balasubramaniyan.  2021.  Implementation of Human in The Loop on the TurtleBot using Reinforced Learning methods and Robot Operating System (ROS). 2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :0448–0452.
In this paper, an implementation of a human in the loop (HITL) technique for robot navigation in an indoor environment is described. The HITL technique is integrated into the reinforcement learning algorithms for mobile robot navigation. Reinforcement algorithms, specifically Q-learning and SARSA, are used combined with HITL since these algorithms are good in exploration and navigation. Turtlebot3 has been used as the robot for validating the algorithms by implementing the system using Robot Operating System and Gazebo. The robot-assisted with human feedback was found to be better in navigation task execution when compared to standard algorithms without using human in the loop. This is a work in progress and the next step of this research is exploring other reinforced learning methods and implementing them on a physical robot.
ISSN: 2644-3163
2019-01-16
Horton, M., Samanta, B., Reid, C., Chen, L., Kadlec, C..  2018.  Development of a Secure, Heterogeneous Cloud Robotics Infrastructure: Implementing a Mesh VPN and Robotic File System Security Practices. SoutheastCon 2018. :1–8.

Robotics and the Internet of Things (IoT) are enveloping our society at an exponential rate due to lessening costs and better availability of hardware and software. Additionally, Cloud Robotics and Robot Operating System (ROS) can offset onboard processing power. However, strong and fundamental security practices have not been applied to fully protect these systems., partially negating the benefits of IoT. Researchers are therefore tasked with finding ways of securing communications and systems. Since security and convenience are oftentimes at odds, securing many heterogeneous components without compromising performance can be daunting. Protecting systems from attacks and ensuring that connections and instructions are from approved devices, all while maintaining the performance is imperative. This paper focuses on the development of security best practices and a mesh framework with an open-source, multipoint-to-multipoint virtual private network (VPN) that can tie Linux, Windows, IOS., and Android devices into one secure fabric, with heterogeneous mobile robotic platforms running ROSPY in a secure cloud robotics infrastructure.