Biblio
Software Defined Networking (SDN) provides opportunities for flexible and dynamic traffic engineering. However, in current SDN systems, routing strategies are based on traditional mechanisms which lack in real-time modification and less efficient resource utilization. To overcome these limitations, deep learning is used in this paper to improve the routing computation in SDN. This paper proposes Convolutional Deep Reinforcement Learning (CoDRL) model which is based on deep reinforcement learning agent for routing optimization in SDN to minimize the mean network delay and packet loss rate. The CoDRL model consists of Deep Deterministic Policy Gradients (DDPG) deep agent coupled with Convolution layer. The proposed model tends to automatically adapts the dynamic packet routing using network data obtained through the SDN controller, and provides the routing configuration that attempts to reduce network congestion and minimize the mean network delay. Hence, the proposed deep agent exhibits good convergence towards providing routing configurations that improves the network performance.
This paper investigates the use of deep reinforcement learning (DRL) in the design of a "universal" MAC protocol referred to as Deep-reinforcement Learning Multiple Access (DLMA). The design framework is partially inspired by the vision of DARPA SC2, a 3-year competition whereby competitors are to come up with a clean-slate design that "best share spectrum with any network(s), in any environment, without prior knowledge, leveraging on machine-learning technique". While the scope of DARPA SC2 is broad and involves the redesign of PHY, MAC, and Network layers, this paper's focus is narrower and only involves the MAC design. In particular, we consider the problem of sharing time slots among a multiple of time-slotted networks that adopt different MAC protocols. One of the MAC protocols is DLMA. The other two are TDMA and ALOHA. The DRL agents of DLMA do not know that the other two MAC protocols are TDMA and ALOHA. Yet, by a series of observations of the environment, its own actions, and the rewards - in accordance with the DRL algorithmic framework - a DRL agent can learn the optimal MAC strategy for harmonious co-existence with TDMA and ALOHA nodes. In particular, the use of neural networks in DRL (as opposed to traditional reinforcement learning) allows for fast convergence to optimal solutions and robustness against perturbation in hyper- parameter settings, two essential properties for practical deployment of DLMA in real wireless networks.
Person re-identification is an important task in video surveillance, focusing on finding the same person across different cameras. However, most existing methods of video-based person re-identification still have some limitations (e.g., the lack of effective deep learning framework, the robustness of the model, and the same treatment for all video frames) which make them unable to achieve better recognition performance. In this paper, we propose a novel self-paced learning algorithm for video-based person re-identification, which could gradually learn from simple to complex samples for a mature and stable model. Self-paced learning is employed to enhance video-based person re-identification based on deep neural network, so that deep neural network and self-paced learning are unified into one frame. Then, based on the trained self-paced learning, we propose to employ deep reinforcement learning to discard misleading and confounding frames and find the most representative frames from video pairs. With the advantage of deep reinforcement learning, our method can learn strategies to select the optimal frame groups. Experiments show that the proposed framework outperforms the existing methods on the iLIDS-VID, PRID-2011 and MARS datasets.
As a new research hotspot in the field of artificial intelligence, deep reinforcement learning (DRL) has achieved certain success in various fields such as robot control, computer vision, natural language processing and so on. At the same time, the possibility of its application being attacked and whether it have a strong resistance to strike has also become a hot topic in recent years. Therefore, we select the representative Deep Q Network (DQN) algorithm in deep reinforcement learning, and use the robotic automatic pathfinding application as a countermeasure application scenario for the first time, and attack DQN algorithm against the vulnerability of the adversarial samples. In this paper, we first use DQN to find the optimal path, and analyze the rules of DQN pathfinding. Then, we propose a method that can effectively find vulnerable points towards White-Box Q table variation in DQN pathfinding training. Finally, we build a simulation environment as a basic experimental platform to test our method, through multiple experiments, we can successfully find the adversarial examples and the experimental results show that the supervised method we proposed is effective.