Visible to the public Biblio

Filters: Keyword is acoustic wave  [Clear All Filters]
2022-12-07
Acosta, L., Guerrero, E., Caballero, C., Verdú, J., de Paco, P..  2022.  Synthesis of Acoustic Wave Multiport Functions by using Coupling Matrix Methodologies. 2022 IEEE MTT-S International Conference on Microwave Acoustics and Mechanics (IC-MAM). :56—59.
Acoustic wave (AW) synthesis methodologies have become popular among AW filter designers because they provide a fast and precise seed to start with the design of AW devices. Nowadays, with the increasing complexity of carrier aggregation, there is a strong necessity to develop synthesis methods more focused on multiport filtering schemes. However, when dealing with multiport filtering functions, numerical accuracy plays an important role to succeed with the synthesis process since polynomial degrees are much higher as compared to the standalone filter case. In addition to polynomial degree, the number set of polynomial coefficients is also an important source of error during the extraction of the circuital elements of the filter. Nonetheless, in this paper is demonstrated that coupling matrix approaches are the best choice when the objective is to synthesize filtering functions with complex roots in their characteristic polynomials, which is the case of the channel polynomials of the multiport device.
2020-12-21
Leff, D., Maskay, A., Cunha, M. P. da.  2020.  Wireless Interrogation of High Temperature Surface Acoustic Wave Dynamic Strain Sensor. 2020 IEEE International Ultrasonics Symposium (IUS). :1–4.
Dynamic strain sensing is necessary for high-temperature harsh-environment applications, including powerplants, oil wells, aerospace, and metal manufacturing. Monitoring dynamic strain is important for structural health monitoring and condition-based maintenance in order to guarantee safety, increase process efficiency, and reduce operation and maintenance costs. Sensing in high-temperature (HT), harsh-environments (HE) comes with challenges including mounting and packaging, sensor stability, and data acquisition and processing. Wireless sensor operation at HT is desirable because it reduces the complexity of the sensor connection, increases reliability, and reduces costs. Surface acoustic wave resonators (SAWRs) are compact, can operate wirelessly and battery-free, and have been shown to operate above 1000°C, making them a potential option for HT HE dynamic strain sensing. This paper presents wirelessly interrogated SAWR dynamic strain sensors operating around 288.8MHz at room temperature and tested up to 400°C. The SAWRs were calibrated with a high-temperature wired commercial strain gauge. The sensors were mounted onto a tapered-type Inconel constant stress beam and the assembly was tested inside a box furnace. The SAWR sensitivity to dynamic strain excitation at 25°C, 100°C, and 400°C was .439 μV/με, 0.363μV/με, and .136 μV/με, respectively. The experimental outcomes verified that inductive coupled wirelessly interrogated SAWRs can be successfully used for dynamic strain sensing up to 400°C.
Tseng, S.-Y., Hsiao, C.-C., Wu, R.-B..  2020.  Synthesis and Realization of Chebyshev Filters Based on Constant Electromechanical Coupling Coefficient Acoustic Wave Resonators. 2020 IEEE/MTT-S International Microwave Symposium (IMS). :257–260.
This paper proposes a method to synthesis acoustic wave (AW) filters with Chebyshev response automatically. Meanwhile, each AW resonator used to design the filter can be easily fabricated on the same piezoelectric substrate. The method is based on an optimization algorithm with constraints for constant electromechanical coupling coefficient ( kt2) to minimize the defined cost function. Finally, the experimental result for a surface acoustic wave (SAW) filter of global positioning system (GPS) frequency band based on the 42° lithium tantalate (LiTaO3) substrate validates the simulation results. The designed filter shows insertion loss (IL) and return loss (RL) better than 2.5dB and 18dB respectively in the pass-band, and out-band reflection larger than 30dB.
2020-01-13
Dyyak, Ivan, Horlatch, Vitaliy, Shynkarenko, Heorhiy.  2019.  Formulation and Numerical Analysis of Acoustics Problems in Coupled Thermohydroelastic Systems. 2019 XXIVth International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED). :168–171.
The coupled thermohydroelastic processes of acoustic wave and heat propagation in weak viscous fluid and elastic bodies form the basis of dissipative acoustics. The problems of dissipative acoustics have many applications in engineering practice, in particular in the development of appropriate medical equipment. This paper presents mathematical models for time and frequency domain problems in terms of unknown displacements and temperatures in both the fluid and the elastic body. Formulated corresponding variational problems and constructed numerical schemes for their solution based on the Galerkin approximations. The method of proving the well-posedness of the considered variational problems is proposed.
2019-01-16
Koshovy, G. I..  2018.  Mathematical Models of Acoustic Wave Scattering by a Finite Flat Impedance Strip Grating. 2018 XXIIIrd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED). :137–140.
Analysis of acoustic wave scattering by a finite flat impedance strip grating is presented. The associated two-dimensional (2-D) boundary-value problem is considered in the full-wave manner and cast to a set of coupled integral equations. Based on them, we build several mathematical models. The focus of research is on the acoustic plane wave scattering by a grating of narrow impedance strips that has explicit asymptotic solution.