Biblio
Object Injection Vulnerability (OIV) is an emerging threat for web applications. It involves accepting external inputs during deserialization operation and use the inputs for sensitive operations such as file access, modification, and deletion. The challenge is the automation of the detection process. When the application size is large, it becomes hard to perform traditional approaches such as data flow analysis. Recent approaches fall short of narrowing down the list of source files to aid developers in discovering OIV and the flexibility to check for the presence of OIV through various known APIs. In this work, we address these limitations by exploring a concept borrowed from the information retrieval domain called Latent Semantic Indexing (LSI) to discover OIV. The approach analyzes application source code and builds an initial term document matrix which is then transformed systematically using singular value decomposition to reduce the search space. The approach identifies a small set of documents (source files) that are likely responsible for OIVs. We apply the LSI concept to three open source PHP applications that have been reported to contain OIVs. Our initial evaluation results suggest that the proposed LSI-based approach can identify OIVs and identify new vulnerabilities.
The success or failure of a mobile application (`app') is largely determined by user ratings. Users frequently make their app choices based on the ratings of apps in comparison with similar, often competing apps. Users also expect apps to continually provide new features while maintaining quality, or the ratings drop. At the same time apps must also be secure, but is there a historical trade-off between security and ratings? Or are app store ratings a more all-encompassing measure of product maturity? We used static analysis tools to collect security-related metrics in 38,466 Android apps from the Google Play store. We compared the rate of an app's permission misuse, number of requested permissions, and Androrisk score, against its user rating. We found that high-rated apps have statistically significantly higher security risk metrics than low-rated apps. However, the correlations are weak. This result supports the conventional wisdom that users are not factoring security risks into their ratings in a meaningful way. This could be due to several reasons including users not placing much emphasis on security, or that the typical user is unable to gauge the security risk level of the apps they use everyday.
We consider the problem of designing (or augmenting) an electric power system at a minimum cost such that it satisfies the N-k-ε survivability criterion. This survivability criterion is a generalization of the well-known N-k criterion, and it requires that at least (1-εj) fraction of the steady-state demand be met after failures of j components, for j=0,1,...,k. The network design problem adds another level of complexity to the notoriously hard contingency analysis problem, since the contingency analysis is only one of the requirements for the design optimization problem. We present a mixed-integer programming formulation of this problem that takes into account both transmission and generation expansion. We propose an algorithm that can avoid combinatorial explosion in the number of contingencies, by seeking vulnerabilities in intermediary solutions and constraining the design space accordingly. Our approach is built on our ability to identify such system vulnerabilities quickly. Our empirical studies on modified instances of the IEEE 30-bus and IEEE 57-bus systems show the effectiveness of our methods. We were able to solve the transmission and generation expansion problems for k=4 in approximately 30 min, while other approaches failed to provide a solution at the end of 2 h.
- « first
- ‹ previous
- 1
- 2
- 3
- 4