Biblio
CANDECOMP/PARAFAC (CP) decomposition has been widely used to deal with multi-way data. For real-time or large-scale tensors, based on the ideas of randomized-sampling CP decomposition algorithm and online CP decomposition algorithm, a novel CP decomposition algorithm called randomized online CP decomposition (ROCP) is proposed in this paper. The proposed algorithm can avoid forming full Khatri-Rao product, which leads to boost the speed largely and reduce memory usage. The experimental results on synthetic data and real-world data show the ROCP algorithm is able to cope with CP decomposition for large-scale tensors with arbitrary number of dimensions. In addition, ROCP can reduce the computing time and memory usage dramatically, especially for large-scale tensors.
This paper presents an image technique Discrete Wavelet Transform and Singular Value Decomposition for image steganography. We are using a text file and convert into an image as watermark and embed watermarks into the cover image. We evaluate performance and compare this method with other methods like Least Significant Bit, Discrete Cosine Transform, and Discrete Wavelet Transform using Peak Signal Noise Ratio and Mean Squared Error. The result of this experiment showed that combine of Discrete Wavelet Transform and Singular Value Decomposition performance is better than the Least Significant Bit, Discrete Cosine Transform, and Discrete Wavelet Transform. The result of Peak Signal Noise Ratio obtained from Discrete Wavelet Transform and Singular Value Decomposition method is 57.0519 and 56.9520 while the result of Mean Squared Error is 0.1282 and 0.1311. Future work for this research is to add the encryption method on the data to be entered so that if there is an attack then the encryption method can secure the data becomes more secure.
Software Defined Networking (SDN) and Network Function Virtualisation (NFV) are transforming modern networks towards a service-oriented architecture. At the same time, the cybersecurity industry is rapidly adopting Machine Learning (ML) algorithms to improve detection and mitigation of complex attacks. Traditional intrusion detection systems perform signature-based detection, based on well-known malicious traffic patterns that signify potential attacks. The main drawback of this method is that attack patterns need to be known in advance and signatures must be preconfigured. Hence, typical systems fail to detect a zero-day attack or an attack with unknown signature. This work considers the use of machine learning for advanced anomaly detection, and specifically deploys the Apache Spot ML framework on an SDN/NFV-enabled testbed running cybersecurity services as Virtual Network Functions (VNFs). VNFs are used to capture traffic for ingestion by the ML algorithm and apply mitigation measures in case of a detected anomaly. Apache Spot utilises Latent Dirichlet Allocation to identify anomalous traffic patterns in Netflow, DNS and proxy data. The overall performance of Apache Spot is evaluated by deploying Denial of Service (Slowloris, BoNeSi) and a Data Exfiltration attack (iodine).
Source location privacy (SLP) is becoming an important property for a large class of security-critical wireless sensor network applications such as monitoring and tracking. Much of the previous work on SLP have focused on the development of various protocols to enhance the level of SLP imparted to the network, under various attacker models and other conditions. Others works have focused on analysing the level of SLP being imparted by a specific protocol. In this paper, we focus on deconstructing routing-based SLP protocols to enable a better understanding of their structure. We argue that the SLP-aware routing protocols can be classified into two main categories, namely (i) spatial and (ii) temporal. Based on this, we show that there are three important components, namely (i) decoy selection, (ii) use and routing of control messages and (iii) use and routing of decoy messages. The decoy selection technique imparts the spatial or temporal property of SLP-aware routing. We show the viability of the framework through the construction of well-known SLP-aware routing protocols using the identified components.
We present a novel approach to proving the absence of timing channels. The idea is to partition the programâs execution traces in such a way that each partition component is checked for timing attack resilience by a time complexity analysis and that per-component resilience implies the resilience of the whole program. We construct a partition by splitting the program traces at secret-independent branches. This ensures that any pair of traces with the same public input has a component containing both traces. Crucially, the per-component checks can be normal safety properties expressed in terms of a single execution. Our approach is thus in contrast to prior approaches, such as self-composition, that aim to reason about multiple (k⥠2) executions at once. We formalize the above as an approach called quotient partitioning, generalized to any k-safety property, and prove it to be sound. A key feature of our approach is a demand-driven partitioning strategy that uses a regex-like notion called trails to identify sets of execution traces, particularly those influenced by tainted (or secret) data. We have applied our technique in a prototype implementation tool called Blazer, based on WALA, PPL, and the brics automaton library. We have proved timing-channel freedom of (or synthesized an attack specification for) 24 programs written in Java bytecode, including 6 classic examples from the literature and 6 examples extracted from the DARPA STAC challenge problems.
Summary form only given. Strong light-matter coupling has been recently successfully explored in the GHz and THz [1] range with on-chip platforms. New and intriguing quantum optical phenomena have been predicted in the ultrastrong coupling regime [2], when the coupling strength Ω becomes comparable to the unperturbed frequency of the system ω. We recently proposed a new experimental platform where we couple the inter-Landau level transition of an high-mobility 2DEG to the highly subwavelength photonic mode of an LC meta-atom [3] showing very large Ω/ωc = 0.87. Our system benefits from the collective enhancement of the light-matter coupling which comes from the scaling of the coupling Ω ∝ √n, were n is the number of optically active electrons. In our previous experiments [3] and in literature [4] this number varies from 104-103 electrons per meta-atom. We now engineer a new cavity, resonant at 290 GHz, with an extremely reduced effective mode surface Seff = 4 × 10-14 m2 (FE simulations, CST), yielding large field enhancements above 1500 and allowing to enter the few (\textbackslashtextless;100) electron regime. It consist of a complementary metasurface with two very sharp metallic tips separated by a 60 nm gap (Fig.1(a, b)) on top of a single triangular quantum well. THz-TDS transmission experiments as a function of the applied magnetic field reveal strong anticrossing of the cavity mode with linear cyclotron dispersion. Measurements for arrays of only 12 cavities are reported in Fig.1(c). On the top horizontal axis we report the number of electrons occupying the topmost Landau level as a function of the magnetic field. At the anticrossing field of B=0.73 T we measure approximately 60 electrons ultra strongly coupled (Ω/ω- \textbackslashtextbar\textbackslashtextbar
Multi-state logic presents a promising avenue for more-than-Moore scaling, since efficient implementation of multi-valued logic (MVL) can significantly reduce switching and interconnection requirements and result in significant benefits compared to binary CMOS. So far, traditional approaches lag behind binary CMOS due to: (a) reliance on logic decomposition approaches [4][5][6] that result in many multi-valued minterms [4], complex polynomials [5], and decision diagrams [6], which are difficult to implement, and (b) emulation of multi-valued computation and communication through binary switches and medium that require data conversion, and large circuits. In this paper, we propose a fundamentally different approach for MVL decomposition, merging concepts from data science and nanoelectronics to tackle the problems, (a) First, we do linear regression on all inputs and outputs of a multivalued function, and find an expression that fits most input and output combinations. For unmatched combinations, we do successive regressions to find linear expressions. Next, using our novel visual pattern matching technique, we find conditions based on input and output conditions to select each expression. These expressions along with associated selection criteria ensure that for all possible inputs of a specific function, correct output can be reached. Our selection of regression model to find linear expressions, coefficients and conditions allow efficient hardware implementation. We discuss an approach for solving problem (b) and show an example of quaternary sum circuit. Our estimates show 65.6% saving of switching components compared with a 4-bit CMOS adder.
Tensor decompositions, which are factorizations of multi-dimensional arrays, are becoming increasingly important in large-scale data analytics. A popular tensor decomposition algorithm is Canonical Decomposition/Parallel Factorization using alternating least squares fitting (CP-ALS). Tensors that model real-world applications are often very large and sparse, driving the need for high performance implementations of decomposition algorithms, such as CP-ALS, that can take advantage of many types of compute resources. In this work we present ReFacTo, a heterogeneous distributed tensor decomposition implementation based on DeFacTo, an existing distributed memory approach to CP-ALS. DFacTo reduces the critical routine of CP-ALS to a series of sparse matrix-vector multiplications (SpMVs). ReFacTo leverages GPUs within a cluster via MPI to perform these SpMVs and uses OpenMP threads to parallelize other routines. We evaluate the performance of ReFacTo when using NVIDIA's GPU-based cuSPARSE library and compare it to an alternative implementation that uses Intel's CPU-based Math Kernel Library (MKL) for the SpMV. Furthermore, we provide a discussion of the performance challenges of heterogeneous distributed tensor decompositions based on the results we observed. We find that on up to 32 nodes, the SpMV of ReFacTo when using MKL is up to 6.8× faster than ReFacTo when using cuSPARSE.
In this paper a method of monostatic RCS measuring in real conditions for complex shaped objects is proposed. The basic idea of the method is to provide measuring in near field zone for different parts of the object (fragments) separately. This technique is titled "decomposition method". After such measurements all RCS data are summed and one can obtain the average RCS of investigated object. Such method is much more accessible in comparison with natural measurements in far field zone. In this paper the decomposition method is tested numerically. For this a model of complex shape object (tank T-90) is divided into the fragments for some direction of view. It is shown that the sum of RCS of the fragments is close to the full object RCS for corresponding direction.
Audio Steganography is the technique of hiding any secret information behind a cover audio file without impairing its quality. Data hiding in audio signals has various applications such as secret communications and concealing data that may influence the security and safety of governments and personnel and has possible important applications in 5G communication systems. This paper proposes an efficient secure steganography scheme based on the high correlation between successive audio signals. This is similar to the case of differential pulse coding modulation technique (DPCM) where encoding uses the redundancy in sample values to encode the signals with lower bit rate. Discrete Wavelet Transform (DWT) of audio samples is used to store hidden data in the least important coefficients of Haar transform. We use the benefit of the small differences between successive samples generated from encoding of the cover audio signal wavelet coefficients to hide image data without making a remarkable change in the cover audio signal. instead of changing of actual audio samples so this doesn't perceptually degrade the audio signal and provides higher hiding capacity with lower distortion. To further increase the security of the image hiding process, the image to be hidden is divided into blocks and the bits of each block are XORed with a different random sequence of logistic maps using hopping technique. The performance of the proposed algorithm has been estimated extensively against attacks and experimental results show that the proposed method achieves good robustness and imperceptibility.
This paper introduces an ensemble model that solves the binary classification problem by incorporating the basic Logistic Regression with the two recent advanced paradigms: extreme gradient boosted decision trees (xgboost) and deep learning. To obtain the best result when integrating sub-models, we introduce a solution to split and select sets of features for the sub-model training. In addition to the ensemble model, we propose a flexible robust and highly scalable new scheme for building a composite classifier that tries to simultaneously implement multiple layers of model decomposition and outputs aggregation to maximally reduce both bias and variance (spread) components of classification errors. We demonstrate the power of our ensemble model to solve the problem of predicting the outcome of Hearthstone, a turn-based computer game, based on game state information. Excellent predictive performance of our model has been acknowledged by the second place scored in the final ranking among 188 competing teams.
The inherent heterogeneity in the uncertainty of variable generations (e.g., wind, solar, tidal and wave-power) in electric grid coupled with the dynamic nature of distributed architecture of sub-systems, and the need for information synchronization has made the problem of resource allocation and monitoring a tremendous challenge for the next-generation smart grid. Unfortunately, the deployment of distributed algorithms across micro grids have been overlooked in the electric grid sector. In particular, centralized methods for managing resources and data may not be sufficient to monitor a complex electric grid. This paper discusses a decentralized constrained decomposition using Linear Programming (LP) that optimizes the inter-area transfer across micro grids that reduces total generation cost for the grid. A test grid of IEEE 14-bus system is sectioned into two and three areas, and its effect on inter-transfer is analyzed.
We present a neural network technique for the analysis and extrapolation of time-series data called Neural Decomposition (ND). Units with a sinusoidal activation function are used to perform a Fourier-like decomposition of training samples into a sum of sinusoids, augmented by units with nonperiodic activation functions to capture linear trends and other nonperiodic components. We show how careful weight initialization can be combined with regularization to form a simple model that generalizes well. Our method generalizes effectively on the Mackey-Glass series, a dataset of unemployment rates as reported by the U.S. Department of Labor Statistics, a time-series of monthly international airline passengers, and an unevenly sampled time-series of oxygen isotope measurements from a cave in north India. We find that ND outperforms popular time-series forecasting techniques including LSTM, echo state networks, (S)ARIMA, and SVR with a radial basis function.
We consider the problem of enabling robust range estimation of eigenvalue decomposition (EVD) algorithm for a reliable fixed-point design. The simplicity of fixed-point circuitry has always been so tempting to implement EVD algorithms in fixed-point arithmetic. Working towards an effective fixed-point design, integer bit-width allocation is a significant step which has a crucial impact on accuracy and hardware efficiency. This paper investigates the shortcomings of the existing range estimation methods while deriving bounds for the variables of the EVD algorithm. In light of the circumstances, we introduce a range estimation approach based on vector and matrix norm properties together with a scaling procedure that maintains all the assets of an analytical method. The method could derive robust and tight bounds for the variables of EVD algorithm. The bounds derived using the proposed approach remain same for any input matrix and are also independent of the number of iterations or size of the problem. Some benchmark hyperspectral data sets have been used to evaluate the efficiency of the proposed technique. It was found that by the proposed range estimation approach, all the variables generated during the computation of Jacobi EVD is bounded within ±1.
Advances in virtual reality have generated substantial interest in accurately reproducing and storing spatial audio in the higher order ambisonics (HOA) representation, given its rendering flexibility. Recent standardization for HOA compression adopted a framework wherein HOA data are decomposed into principal components that are then encoded by standard audio coding, i.e., frequency domain quantization and entropy coding to exploit psychoacoustic redundancy. A noted shortcoming of this approach is the occasional mismatch in principal components across blocks, and the resulting suboptimal transitions in the data fed to the audio coder. Instead, we propose a framework where singular value decomposition (SVD) is performed after transformation to the frequency domain via the modified discrete cosine transform (MDCT). This framework not only ensures smooth transition across blocks, but also enables frequency dependent SVD for better energy compaction. Moreover, we introduce a novel noise substitution technique to compensate for suppressed ambient energy in discarded higher order ambisonics channels, which significantly enhances the perceptual quality of the reconstructed HOA signal. Objective and subjective evaluation results provide evidence for the effectiveness of the proposed framework in terms of both higher compression gains and better perceptual quality, compared to existing methods.
Lithium Ion batteries usually degrade to an unacceptable capacity level after hundreds or even thousands of cycles. The continuously observed capacity fade data over time and their internal structure can be informative for constructing capacity fade models. This paper applies a mean-covariance decomposition modeling method to analyze the capacity fade data. The proposed approach directly examines the variances and correlations in data of interest and express the correlation matrix in hyper-spherical coordinates using angles and trigonometric functions. The proposed method is applied to model and predict key batteries performance metrics using testing data under various testing conditions.
In this paper, the well-known problem of codependence between inverse dynamics torque and contact force in bimanual object manipulation is addressed. The common contact constraint, namely rigid grasping, is exploited to decompose the set of dynamics equations into two orthogonally decoupled sets. Subsequently, the inverse dynamics control is formulated in a sub-manifold that is independent of the contact force, leading to analytically correct solutions that do not need to resort to common approximations for the aforementioned codependence problem. The contact force is also analytically computed and, therefore, can be optimally distributed using the torque redundancy. Relying on this prediction is most significant in situations where a force sensor at the end-effector is not present or is faulty. Even in the availability of sensory data, the predicted force may be used to correct typically noisy or delayed when filtered measurements, resulting in improved robustness. Simulation experiments on a planar bimanual manipulation model are presented.
A key requirement for most security solutions is to provide secure cryptographic key storage in a way that will easily scale in the age of the Internet of Things. In this paper, we focus on providing such a solution based on Physical Unclonable Functions (PUFs). To this end, we focus on microelectromechanical systems (MEMS)-based gyroscopes and show via wafer-level measurements and simulations, that it is feasible to use the physical and electrical properties of these sensors for cryptographic key generation. After identifying the most promising features, we propose a novel quantization scheme to extract bit strings from the MEMS analog measurements. We provide upper and lower bounds for the minimum entropy of the derived bit strings and fully analyze the intra- and inter-class distributions across the operation range of the MEMS device. We complement these measurements via Monte-Carlo simulations based on the distributions of the parameters measured on actual devices. We also propose and evaluate a complete cryptographic key generation chain based on fuzzy extractors. We derive a full entropy 128-bit key using the obtained min-entropy estimates, requiring 1219 bits of helper data with an (authentication) failure probability of 4 . 10-7. In addition, we propose a dedicated MEMS-PUF design, which is superior to our measured sensor, in terms of chip area, quality and quantity of key seed features.
We develop a systematic approach for analyzing client-server applications that aim to hide sensitive user data from untrusted servers. We then apply it to Mylar, a framework that uses multi-key searchable encryption (MKSE) to build Web applications on top of encrypted data. We demonstrate that (1) the Popa-Zeldovich model for MKSE does not imply security against either passive or active attacks; (2) Mylar-based Web applications reveal users' data and queries to passive and active adversarial servers; and (3) Mylar is generically insecure against active attacks due to system design flaws. Our results show that the problem of securing client-server applications against actively malicious servers is challenging and still unsolved. We conclude with general lessons for the designers of systems that rely on property-preserving or searchable encryption to protect data from untrusted servers.
SQL injection is one of the major threats to the security of the web applications. Attackers try to gain unauthorized access to the database, which has vital and private information of the users. Many researchers have provided various techniques and practices to protect the web applications from attackers. There is a plethora of techniques available to perform SQL injection and usually not everyone is familiar with every attack. Hence, this kind of attack is still the most prevalent. In this paper, we have presented the types of SQL injections attacks and most dominant ways to prevent them.
This paper introduces a novel graph-analytic approach for detecting anomalies in network flow data called GraphPrints. Building on foundational network-mining techniques, our method represents time slices of traffic as a graph, then counts graphlets–-small induced subgraphs that describe local topology. By performing outlier detection on the sequence of graphlet counts, anomalous intervals of traffic are identified, and furthermore, individual IPs experiencing abnormal behavior are singled-out. Initial testing of GraphPrints is performed on real network data with an implanted anomaly. Evaluation shows false positive rates bounded by 2.84% at the time-interval level, and 0.05% at the IP-level with 100% true positive rates at both.
Infrastructure-as-a-Service (IaaS) clouds such as OpenStack consist of two kinds of nodes in their infrastructure: control nodes and compute nodes. While control nodes run all critical services, compute nodes host virtual machines of customers. Given the large number of compute nodes, and the fact that they are hosting VMs of (possibly malicious) customers, it is possible that some of the compute nodes may be compromised. This paper examines the impact of such a compromise. We focus on OpenStack, a popular open-source cloud plat- form that is widely adopted. We show that attackers com- promising a single compute node can extend their controls over the entire cloud infrastructure. They can then gain free access to resources that they have not paid for, or even bring down the whole cloud to affect all customers. This startling result stems from the cloud platform's misplaced trust, which does not match today's threats. To overcome the weakness, we propose a new system, called SOS , for hardening OpenStack. SOS limits trust on compute nodes. SOS consists of a framework that can enforce a wide range of security policies. Specifically, we applied mandatory access control and capabilities to con- fine interactions among different components. Effective confinement policies are generated automatically. Furthermore, SOS requires no modifications to the OpenStack. This has allowed us to deploy SOS on multiple versions of OpenStack. Our experimental results demonstrate that SOS is scalable, incurs negligible overheads and offers strong protection.
Common among the wide variety of ubiquitous networked devices in modern use is wireless 802.11 connectivity. The MAC addresses of these devices are visible to a passive adversary, thereby presenting security and privacy threats - even when link or application-layer encryption is employed. While it is well-known that the most significant three bytes of a MAC address, the OUI, coarsely identify a device's manufacturer, we seek to better understand the ways in which the remaining low-order bytes are allocated in practice. From a collection of more than two billion 802.11 frames observed in the wild, we extract device and model information details for over 285K devices, as leaked by various management frames and discovery protocols. From this rich dataset, we characterize overall device populations and densities, vendor address allocation policies and utilization, OUI sharing among manufacturers, discover unique models occurring in multiple OUIs, and map contiguous address blocks to specific devices. Our mapping thus permits fine-grained device type and model predictions for unknown devices solely on the basis of their MAC address. We validate our inferences on both ground-truth data and a third-party dataset, where we obtain high accuracy. Our results empirically demonstrate the extant structure of the low-order MAC bytes due to manufacturer's sequential allocation policies, and the security and privacy concerns therein.
Given a set D of tuples defined on a domain Omega, we study differentially private algorithms for constructing a histogram over Omega to approximate the tuple distribution in D. Existing solutions for the problem mostly adopt a hierarchical decomposition approach, which recursively splits Omega into sub-domains and computes a noisy tuple count for each sub-domain, until all noisy counts are below a certain threshold. This approach, however, requires that we (i) impose a limit h on the recursion depth in the splitting of Omega and (ii) set the noise in each count to be proportional to h. The choice of h is a serious dilemma: a small h makes the resulting histogram too coarse-grained, while a large h leads to excessive noise in the tuple counts used in deciding whether sub-domains should be split. Furthermore, h cannot be directly tuned based on D; otherwise, the choice of h itself reveals private information and violates differential privacy. To remedy the deficiency of existing solutions, we present PrivTree, a histogram construction algorithm that adopts hierarchical decomposition but completely eliminates the dependency on a pre-defined h. The core of PrivTree is a novel mechanism that (i) exploits a new analysis on the Laplace distribution and (ii) enables us to use only a constant amount of noise in deciding whether a sub-domain should be split, without worrying about the recursion depth of splitting. We demonstrate the application of PrivTree in modelling spatial data, and show that it can be extended to handle sequence data (where the decision in sub-domain splitting is not based on tuple counts but a more sophisticated measure). Our experiments on a variety of real datasets show that PrivTree considerably outperforms the states of the art in terms of data utility.
When reasoning about software security, researchers and practitioners use the phrase ``attack surface'' as a metaphor for risk. Enumerate and minimize the ways attackers can break in then risk is reduced and the system is better protected, the metaphor says. But software systems are much more complicated than their surfaces. We propose function- and file-level attack surface metrics–-proximity and risky walk–-that enable fine-grained risk assessment. Our risky walk metric is highly configurable: we use PageRank on a probability-weighted call graph to simulate attacker behavior of finding or exploiting a vulnerability. We provide evidence-based guidance for deploying these metrics, including an extensive parameter tuning study. We conducted an empirical study on two large open source projects, FFmpeg and Wireshark, to investigate the potential correlation between our metrics and historical post-release vulnerabilities. We found our metrics to be statistically significantly associated with vulnerable functions/files with a small-to-large Cohen's d effect size. Our prediction model achieved an increase of 36% (in FFmpeg) and 27% (in Wireshark) in the average value of F-measure over a base model built with SLOC and coupling metrics. Our prediction model outperformed comparable models from prior literature with notable improvements: 58% reduction in false negative rate, 81% reduction in false positive rate, and 548% increase in F-measure. These metrics advance vulnerability prevention by [(a)] being flexible in terms of granularity, performing better than vulnerability prediction literature, and being tunable so that practitioners can tailor the metrics to their products and better assess security risk.