Biblio
Filters: Keyword is mobile application security [Clear All Filters]
An Automated Pipeline for Privacy Leak Analysis of Android Applications. 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE). :1048—1050.
.
2021. We propose an automated pipeline for analyzing privacy leaks in Android applications. By using a combination of dynamic and static analysis, we validate the results from each other to improve accuracy. Compare to the state-of-the-art approaches, we not only capture the network traffic for analysis, but also look into the data flows inside the application. We particularly focus on the privacy leakage caused by third-party services and high-risk permissions. The proposed automated approach will combine taint analysis, permission analysis, network traffic analysis, and dynamic function tracing during run-time to identify private information leaks. We further implement an automatic validation and complementation process to reduce false positives. A small-scale experiment has been conducted on 30 Android applications and a large-scale experiment on more than 10,000 Android applications is in progress.
Demo: DroidNet - An Android Permission Control Recommendation System Based on Crowdsourcing. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). :737–738.
.
2019. Mobile and web application security, particularly the areas of data privacy, has raised much concerns from the public in recent years. Most applications, or apps for short, are installed without disclosing full information to users and clearly stating what the application has access to, which often raises concern when users become aware of unnecessary information being collected. Unfortunately, most users have little to no technical expertise in regards to what permissions should be turned on and can only rely on their intuition and past experiences to make relatively uninformed decisions. To solve this problem, we developed DroidNet, which is a crowd-sourced Android recommendation tool and framework. DroidNet alleviates privacy concerns and presents users with high confidence permission control recommendations based on the decision from expert users who are using the same apps. This paper explains the general framework, principles, and model behind DroidNet while also providing an experimental setup design which shows the effectiveness and necessity for such a tool.
Vulnerability Detection on Mobile Applications Using State Machine Inference. 2018 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :1–10.
.
2018. Although the importance of mobile applications grows every day, recent vulnerability reports argue the application's deficiency to meet modern security standards. Testing strategies alleviate the problem by identifying security violations in software implementations. This paper proposes a novel testing methodology that applies state machine learning of mobile Android applications in combination with algorithms that discover attack paths in the learned state machine. The presence of an attack path evidences the existence of a vulnerability in the mobile application. We apply our methods to real-life apps and show that the novel methodology is capable of identifying vulnerabilities.