Biblio
Vehicle ad-hoc network (VANET) is the main driving force to alleviate traffic congestion and accelerate the construction of intelligent transportation. However, the rapid growth of the number of vehicles makes the construction of the safety system of the vehicle network facing multiple tests. This paper proposes an identity-based aggregate signature scheme to protect the privacy of vehicle identity, receive messages in time and authenticate quickly in VANET. The scheme uses aggregate signature algorithm to aggregate the signatures of multiple users into one signature, and joins the idea of batch authentication to complete the authentication of multiple vehicular units, thereby improving the verification efficiency. In addition, the pseudoidentity of vehicles is used to achieve the purpose of vehicle anonymity and privacy protection. Finally, the secure storage of message signatures is effectively realized by using reliable cloud storage technology. Compared with similar schemes, this paper improves authentication efficiency while ensuring security, and has lower storage overhead.
Nowadays, Vehicular ad hoc network confronts many challenges in terms of security and privacy, due to the fact that data transmitted are diffused in an open access environment. However, highest of drivers want to maintain their information discreet and protected, and they do not want to share their confidential information. So, the private information of drivers who are distributed in this network must be protected against various threats that may damage their privacy. That is why, confidentiality, integrity and availability are the important security requirements in VANET. This paper focus on security threat in vehicle network especially on the availability of this network. Then we regard the rational attacker who decides to lead an attack based on its adversary's strategy to maximize its own attack interests. Our aim is to provide reliability and privacy of VANET system, by preventing attackers from violating and endangering the network. to ensure this objective, we adopt a tree structure called attack tree to model the attacker's potential attack strategies. Also, we join the countermeasures to the attack tree in order to build attack-defense tree for defending these attacks.