Biblio
Deep Neural Networks (DNNs) are susceptible to model stealing attacks, which allows a data-limited adversary with no knowledge of the training dataset to clone the functionality of a target model, just by using black-box query access. Such attacks are typically carried out by querying the target model using inputs that are synthetically generated or sampled from a surrogate dataset to construct a labeled dataset. The adversary can use this labeled dataset to train a clone model, which achieves a classification accuracy comparable to that of the target model. We propose "Adaptive Misinformation" to defend against such model stealing attacks. We identify that all existing model stealing attacks invariably query the target model with Out-Of-Distribution (OOD) inputs. By selectively sending incorrect predictions for OOD queries, our defense substantially degrades the accuracy of the attacker's clone model (by up to 40%), while minimally impacting the accuracy (\textbackslashtextless; 0.5%) for benign users. Compared to existing defenses, our defense has a significantly better security vs accuracy trade-off and incurs minimal computational overhead.
Reverse engineering is a manually intensive but necessary technique for understanding the inner workings of new malware, finding vulnerabilities in existing systems, and detecting patent infringements in released software. An assembly clone search engine facilitates the work of reverse engineers by identifying those duplicated or known parts. However, it is challenging to design a robust clone search engine, since there exist various compiler optimization options and code obfuscation techniques that make logically similar assembly functions appear to be very different. A practical clone search engine relies on a robust vector representation of assembly code. However, the existing clone search approaches, which rely on a manual feature engineering process to form a feature vector for an assembly function, fail to consider the relationships between features and identify those unique patterns that can statistically distinguish assembly functions. To address this problem, we propose to jointly learn the lexical semantic relationships and the vector representation of assembly functions based on assembly code. We have developed an assembly code representation learning model \textbackslashemphAsm2Vec. It only needs assembly code as input and does not require any prior knowledge such as the correct mapping between assembly functions. It can find and incorporate rich semantic relationships among tokens appearing in assembly code. We conduct extensive experiments and benchmark the learning model with state-of-the-art static and dynamic clone search approaches. We show that the learned representation is more robust and significantly outperforms existing methods against changes introduced by obfuscation and optimizations.
The existing Disaster Recovery(DR) system has a technique for integrity of the duplicated file to be used for recovery, but it could not be used if the file was changed. In this study, a duplicate file is generated as a block and managed as a block-chain. If the duplicate file is corrupted, the DR system will check the integrity of the duplicated file by referring to the block-chain and proceed with the recovery. The proposed technology is verified through recovery performance evaluation and scenarios.
Radio-Frequency Identification (RFID) tags have been widely used as a low-cost wireless method for detection of counterfeit product injection in supply chains. In order to adequately perform authentication, current RFID monitoring schemes need to either have a persistent online connection between supply chain partners and the back-end database or have a local database on each partner site. A persistent online connection is not guaranteed and local databases on each partner site impose extra cost and security issues. We solve this problem by introducing a new scheme in which a small Non-Volatile Memory (NVM) embedded in RFID tag is used to function as a tiny “encoded local database”. In addition our scheme resists “tag tracing” so that each partner's operation remains private. Our scheme can be implemented in less than 1200 gates satisfying current RFID technology requirements.
The Center for Strategic and International Studies estimates the annual cost from cyber crime to be more than \$400 billion. Most notable is the recent digital identity thefts that compromised millions of accounts. These attacks emphasize the security problems of using clonable static information. One possible solution is the use of a physical device known as a Physically Unclonable Function (PUF). PUFs can be used to create encryption keys, generate random numbers, or authenticate devices. While the concept shows promise, current PUF implementations are inherently problematic: inconsistent behavior, expensive, susceptible to modeling attacks, and permanent. Therefore, we propose a new solution by which an unclonable, dynamic digital identity is created between two communication endpoints such as mobile devices. This Physically Unclonable Digital ID (PUDID) is created by injecting a data scrambling PUF device at the data origin point that corresponds to a unique and matching descrambler/hardware authentication at the receiving end. This device is designed using macroscopic, intentional anomalies, making them inexpensive to produce. PUDID is resistant to cryptanalysis due to the separation of the challenge response pair and a series of hash functions. PUDID is also unique in that by combining the PUF device identity with a dynamic human identity, we can create true two-factor authentication. We also propose an alternative solution that eliminates the need for a PUF mechanism altogether by combining tamper resistant capabilities with a series of hash functions. This tamper resistant device, referred to as a Quasi-PUDID (Q-PUDID), modifies input data, using a black-box mechanism, in an unpredictable way. By mimicking PUF attributes, Q-PUDID is able to avoid traditional PUF challenges thereby providing high-performing physical identity assurance with or without a low performing PUF mechanism. Three different application scenarios with mobile devices for PUDID and Q-PUDI- have been analyzed to show their unique advantages over traditional PUFs and outline the potential for placement in a host of applications.
IT industry loses tens of billions of dollars annually from security attacks such as tampering and malicious reverse engineering. Code obfuscation techniques counter such attacks by transforming code into patterns that resist the attacks. None of the current code obfuscation techniques satisfy all the obfuscation effectiveness criteria such as resistance to reverse engineering attacks and state space increase. To address this, we introduce new code patterns that we call nontrivial code clones and propose a new obfuscation scheme that combines nontrivial clones with existing obfuscation techniques to satisfy all the effectiveness criteria. The nontrivial code clones need to be constructed manually, thus adding to the development cost. This cost can be limited by cloning only the code fragments that need protection and by reusing the clones across projects. This makes it worthwhile considering the security risks. In this paper, we present our scheme and illustrate it with a toy example.