Visible to the public Biblio

Filters: Keyword is convolutional neural networks (cnns)  [Clear All Filters]
2021-09-30
Hou, Qilin, Wang, Jinglin, Shen, Yong.  2020.  Multiple Sensors Fault Diagnosis for Rolling Bearing Based on Variational Mode Decomposition and Convolutional Neural Networks. 2020 11th International Conference on Prognostics and System Health Management (PHM-2020 Jinan). :450–455.
The reliability of mechanical equipment is very important for the security operation of large-scale equipment. This paper presents a rolling bearing fault diagnosis method based on Variational Mode Decomposition (VMD) and Convolutional Neural Network (CNN). This proposed method includes using VMD and CNN to extend multi-sensor data, extracting detailed features and achieve more robust sensor fusion. Representative features can be extracted automatically from the raw signals. The proposed method can extract features directly from data without prior knowledge. The effectiveness of this method is verified on Case Western Reserve University (CWRU) dataset. Compared with one sensor and traditional approaches using manual feature extraction, the results show the superior diagnosis performance of the proposed method. Because of the end-to-end feature learning ability, this method can be extended to other kinds of sensor mechanical fault diagnosis.
2021-03-29
Singh, S., Nasoz, F..  2020.  Facial Expression Recognition with Convolutional Neural Networks. 2020 10th Annual Computing and Communication Workshop and Conference (CCWC). :0324—0328.

Emotions are a powerful tool in communication and one way that humans show their emotions is through their facial expressions. One of the challenging and powerful tasks in social communications is facial expression recognition, as in non-verbal communication, facial expressions are key. In the field of Artificial Intelligence, Facial Expression Recognition (FER) is an active research area, with several recent studies using Convolutional Neural Networks (CNNs). In this paper, we demonstrate the classification of FER based on static images, using CNNs, without requiring any pre-processing or feature extraction tasks. The paper also illustrates techniques to improve future accuracy in this area by using pre-processing, which includes face detection and illumination correction. Feature extraction is used to extract the most prominent parts of the face, including the jaw, mouth, eyes, nose, and eyebrows. Furthermore, we also discuss the literature review and present our CNN architecture, and the challenges of using max-pooling and dropout, which eventually aided in better performance. We obtained a test accuracy of 61.7% on FER2013 in a seven-classes classification task compared to 75.2% in state-of-the-art classification.

2019-02-08
Yang, Chun, Wen, Yu, Guo, Jianbin, Song, Haitao, Li, Linfeng, Che, Haoyang, Meng, Dan.  2018.  A Convolutional Neural Network Based Classifier for Uncompressed Malware Samples. Proceedings of the 1st Workshop on Security-Oriented Designs of Computer Architectures and Processors. :15-17.

This paper proposes a deep learning based method for efficient malware classification. Specially, we convert the malware classification problem into the image classification problem, which can be addressed through leveraging convolutional neural networks (CNNs). For many malware families, the images belonging to the same family have similar contours and textures, so we convert the Binary files of malware samples to uncompressed gray-scale images which possess complete information of the original malware without artificial feature extraction. We then design classifier based on Tensorflow framework of Google by combining the deep learning (DL) and malware detection technology. Experimental results show that the uncompressed gray-scale images of the malware are relatively easy to distinguish and the CNN based classifier can achieve a high success rate of 98.2%