Biblio
Filters: Keyword is Hyperledger Fabric [Clear All Filters]
A traditional medicine intellectual property protection scheme based on Hyperledger Fabric. 2022 4th International Conference on Advances in Computer Technology, Information Science and Communications (CTISC). :1–5.
.
2022. Due to its decentralized trust mechanism, blockchain is increasingly used as a trust intermediary for multi-party cooperation to reduce the cost and risk of maintaining centralized trust nowadays. And as the requirements for privacy and high throughput, consortium blockchain is widely used in data sharing and business cooperation in practical application scenarios. Nowadays, the protection of traditional medicine has been regarded as human intangible cultural heritage in recent years, but this kind of protection still faces the problem that traditional medicine prescriptions are unsuitable for disclosure and difficult to protect. Hyperledger is a consortium blockchain featuring authorized access, high throughput, and tamper-resistance, making it ideal for privacy protection and information depository in traditional medicine protection. This study proposes a solution for intellectual property protection of traditional medicine by using a blockchain platform to record prescription iterations and clinical trial data. The privacy and confidentiality of Hyperledger can keep intellectual property information safe and private. In addition, the author proposes to invite the Patent Offices and legal institutions to join the blockchain network, maintain users' properties and issue certificates, which can provide a legal basis for rights protection when infringement occurs. Finally, the researchers have built a system corresponding to the scheme and tested the system. The test outcomes of the system can explain the usability of the system. And through the test of system throughput, under low system configuration, it can reach about 200 query operations per second, which can meet the application requirements of relevant organizations and governments.
Insider Threat Data Expansion Research using Hyperledger Fabric. 2022 International Conference on Platform Technology and Service (PlatCon). :25—28.
.
2022. This paper deals with how to implement a system that extends insider threat behavior data using private blockchain technology to overcome the limitations of insider threat datasets. Currently, insider threat data is completely undetectable in existing datasets for new methods of insider threat due to the lack of insider threat scenarios and abstracted event behavior. Also, depending on the size of the company, it was difficult to secure a sample of data with the limit of a small number of leaks among many general users in other organizations. In this study, we consider insiders who pose a threat to all businesses as public enemies. In addition, we proposed a system that can use a private blockchain to expand insider threat behavior data between network participants in real-time to ensure reliability and transparency.
A Novel Blockchain-Driven Framework for Deterring Fraud in Supply Chain Finance. 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC). :1000–1005.
.
2022. Frauds in supply chain finance not only result in substantial loss for financial institutions (e.g., banks, trust company, private funds), but also are detrimental to the reputation of the ecosystem. However, such frauds are hard to detect due to the complexity of the operating environment in supply chain finance such as involvement of multiple parties under different agreements. Traditional instruments of financial institutions are time-consuming yet insufficient in countering fraudulent supply chain financing. In this study, we propose a novel blockchain-driven framework for deterring fraud in supply chain finance. Specifically, we use inventory financing in jewelry supply chain as an illustrative scenario. The blockchain technology enables secure and trusted data sharing among multiple parties due to its characteristics of immutability and traceability. Consequently, information on manufacturing, brand license, and warehouse status are available to financial institutions in real time. Moreover, we develop a novel rule-based fraud check module to automatically detect suspicious fraud cases by auditing documents shared by multiple parties through a blockchain network. To validate the effectiveness of the proposed framework, we employ agent-based modeling and simulation. Experimental results show that our proposed framework can effectively deter fraudulent supply chain financing as well as improve operational efficiency.
ISSN: 2577-1655
Multi-authoritative Users Assured Data Deletion Scheme in Cloud Computing. 2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). :147—154.
.
2022. With the rapid development of cloud storage technology, an increasing number of enterprises and users choose to store data in the cloud, which can reduce the local overhead and ensure safe storage, sharing, and deletion. In cloud storage, safe data deletion is a critical and challenging problem. This paper proposes an assured data deletion scheme based on multi-authoritative users in the semi-trusted cloud storage scenario (MAU-AD), which aims to realize the secure management of the key without introducing any trusted third party and achieve assured deletion of cloud data. MAU-AD uses access policy graphs to achieve fine-grained access control and data sharing. Besides, the data security is guaranteed by mutual restriction between authoritative users, and the system robustness is improved by multiple authoritative users jointly managing keys. In addition, the traceability of misconduct in the system can be realized by blockchain technology. Through simulation experiments and comparison with related schemes, MAU-AD is proven safe and effective, and it provides a novel application scenario for the assured deletion of cloud storage data.
A Blockchain-based Scalable Electronic Contract Signing System. 2022 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :343–348.
.
2022. As the COVID-19 continues to spread globally, more and more companies are transforming into remote online offices, leading to the expansion of electronic signatures. However, the existing electronic signatures platform has the problem of data-centered management. The system is subject to data loss, tampering, and leakage when an attack from outside or inside occurs. In response to the above problems, this paper designs an electronic signature solution and implements a prototype system based on the consortium blockchain. The solution divides the contract signing process into four states: contract upload, initiation signing, verification signing, and confirm signing. The signing process is mapped with the blockchain-linked data. Users initiate the signature transaction by signing the uploaded contract's hash. The sign state transition is triggered when the transaction is uploaded to the blockchain under the consensus mechanism and the smart contract control, which effectively ensures the integrity of the electronic contract and the non-repudiation of the electronic signature. Finally, the blockchain performance test shows that the system can be applied to the business scenario of contract signing.
UWB Role Allocation with Distributed Ledger Technologies for Scalable Relative Localization in Multi-Robot Systems. 2022 IEEE International Symposium on Robotic and Sensors Environments (ROSE). :1–8.
.
2022. Systems for relative localization in multi-robot systems based on ultra-wideband (UWB) ranging have recently emerged as robust solutions for GNSS-denied environments. Scalability remains one of the key challenges, particularly in adhoc deployments. Recent solutions include dynamic allocation of active and passive localization modes for different robots or nodes in the system. with larger-scale systems becoming more distributed, key research questions arise in the areas of security and trustability of such localization systems. This paper studies the potential integration of collaborative-decision making processes with distributed ledger technologies. Specifically, we investigate the design and implementation of a methodology for running an UWB role allocation algorithm within smart contracts in a blockchain. In previous works, we have separately studied the integration of ROS2 with the Hyperledger Fabric blockchain, and introduced a new algorithm for scalable UWB-based localization. In this paper, we extend these works by (i) running experiments with larger number of mobile robots switching between different spatial configurations and (ii) integrating the dynamic UWB role allocation algorithm into Fabric smart contracts for distributed decision-making in a system of multiple mobile robots. This enables us to deliver the same functionality within a secure and trustable process, with enhanced identity and data access management. Our results show the effectiveness of the UWB role allocation for continuously varying spatial formations of six autonomous mobile robots, while demonstrating a low impact on latency and computational resources of adding the blockchain layer that does not affect the localization process.
Privacy-preserving and Trusted Threat Intelligence Sharing using Distributed Ledgers. 2021 14th International Conference on Security of Information and Networks (SIN). 1:1—6.
.
2021. Threat information sharing is considered as one of the proactive defensive approaches for enhancing the over-all security of trusted partners. Trusted partner organizations can provide access to past and current cybersecurity threats for reducing the risk of a potential cyberattack—the requirements for threat information sharing range from simplistic sharing of documents to threat intelligence sharing. Therefore, the storage and sharing of highly sensitive threat information raises considerable concerns regarding constructing a secure, trusted threat information exchange infrastructure. Establishing a trusted ecosystem for threat sharing will promote the validity, security, anonymity, scalability, latency efficiency, and traceability of the stored information that protects it from unauthorized disclosure. This paper proposes a system that ensures the security principles mentioned above by utilizing a distributed ledger technology that provides secure decentralized operations through smart contracts and provides a privacy-preserving ecosystem for threat information storage and sharing regarding the MITRE ATT&CK framework.
Blockchain for Increased Cyber-Resiliency of Industrial Edge Environments. 2020 IEEE International Conference on Smart Computing (SMARTCOMP). :1–8.
.
2020. The advent of the Internet of Things (IoT) together with its spread in industrial environments have changed pro-duction lines, by dramatically fostering the dynamicity of data sharing and the openness of machines. However, the increased flexibility and openness of the industrial environment (also pushed by the adoption of Edge devices) must not negatively affect the security and safety of production lines and its opera-tional processes. In fact, opening industrial environments towards the Internet and increasing interactions among machines may represent a security threat, if not properly managed. The paper originally proposes the adoption of the Blockchain to securely store in distributed ledgers topology information and access rules, with the primary goal of maximizing the cyber-resiliency of industrial networks. In this manner, it is possible to store and query topology information and security access rules in a completely distributed manner, ensuring data availability even in case a centralized control point is temporarily down or the network partitioned. Moreover, Blockchain consensus algorithms can be used to foster a participative validation of topology information, to reciprocally ensure the identity of interacting machines/nodes, to securely distribute topology information and commands in a privacy-preserving manner, and to trace any past modification in a non-repudiable manner.
Blockchain-Based Secure Collaboration Platform for Sharing and Accessing Scientific Research Data. 2020 3rd International Conference on Hot Information-Centric Networking (HotICN). :34—40.
.
2020. Research teams or institutions in different countries need an effective and secure online platform for collaboration and data sharing. It is essential to build such a collaboration platform with strong data security and privacy. In this paper, we propose a platform for researchers to collaborate and share their data by leveraging attribute-based access control (ABAC) and blockchain technologies. ABAC provides an access control paradigm whereby access rights are granted to users through attribute-based policies, instead of user identities and roles. Hyperledger fabric permission blockchain is used to enable a decentralized secure data sharing environment and preserves user’s privacy. The proposed platform allows researchers to fully control their data, manage access to the data at a fine-grained level, keep file updates with proof of authorship, and ensure data integrity and privacy.
A study on using private-permissioned blockchain for securely sharing farmers data. 2020 Advanced Computing and Communication Technologies for High Performance Applications (ACCTHPA). :103—106.
.
2020. In agriculture, farmers are the most important entity. For supporting farmers in increasing productivity and efficiency, the government offers subsidies, loans, insurances, and so on. This paper explores the usage of Blockchain technology for securing farmer's data in the Indian scenario. The farmer needs to register through the multiple official registration systems for availing different schemes and information provided by the country. The personnel and crop-based details of each farmer are collected at the time of registration. The filing also helps in providing better services to farmers like connecting farmers and traders to ensure a fair price for quality crops, advice to farmers of agricultural practices and location. In this paper, a blockchain-based farmer's data securing system is proposed to provide data provenance and transparency of the information entered in the system. While registering, the data is collected, and it is verified. A single verified record of farmers accessed by various government agriculture departments were designed using the Hyperledger fabric framework.
A Secure Permissioned Blockchain Based System for Trademarks. 2019 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPCON). :135—139.
.
2019. A trademark may be a word, phrase, symbol, sound, color, scent or design, or combination of these, that identifies and distinguishes the products or services of a particular source from those of others. Obtaining a trademark is a complex, time intensive and costly process that involves varied steps before the trademark can be registered including searching prior trademarks, filing of the trademark application, review of the trademark application and final publication for opposition by the public. Currently, the process of trademark registration, renewal and validation faces numerous challenges such as the requirement for registration in different jurisdictions, maintenance of centralized databases in different jurisdictions, proving the authenticity of the physical trademark documents, identifying the violation and abuse of the intellectual property etc. to name a few. Recently, blockchain technology has shown great potential in a variety of industries such as finance, education, energy and resource management, healthcare, due to its decentralization and non-tampering features. Furthermore, in the recent years, smart contracts have attracted increased attention due to the popularity of blockchains. In this study, we have utilized Hyperledger fabric as the permissioned blockchain framework along with smart contracts to provide solution to the financial, procedural, enforcement and protection related challenges of the current trademark system. Our blockchain based application seeks to provide a secure, decentralized, immutable trademark system that can be utilized by the intellectual property organizations across different jurisdictions for easily and effectively registering, renewing, validating and distributing digital trademark certificates.
Blockchain-Based Management of Video Surveillance Systems. 2019 International Conference on Information Networking (ICOIN). :465–468.
.
2019. In this paper, we propose a video surveillance system based on blockchain system. The proposed system consists of a blockchain network with trusted internal managers. The metadata of the video is recorded on the distributed ledger of the blockchain, thereby blocking the possibility of forgery of the data. The proposed architecture encrypts and stores the video, creates a license within the blockchain, and exports the video. Since the decryption key for the video is managed by the private DB of the blockchain, it is not leaked by the internal manager unauthorizedly. In addition, the internal administrator can manage and export videos safely by exporting the license generated in the blockchain to the DRM-applied video player.
Random Seed Generation For IoT Key Generation and Key Management System Using Blockchain. 2020 International Conference on Information Networking (ICOIN). :663–665.
.
2020. Recently, the Internet of Things (IoT) is growing rapidly. IoT sensors are attached to various devices, and information is detected, collected and utilized through various wired and wireless communication environments. As the IoT is used in various places, IoT devices face a variety of malicious attacks such as MITM and reverse engineering. To prevent these, encryption is required for device-to-device communication, and keys required for encryption must be properly managed. We propose a scheme to generate seed needed for key generation and a scheme to manage the public key using blockchain.
A TOTP-Based Two Factor Authentication Scheme for Hyperledger Fabric Blockchain. 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN). :817-819.
.
2018. In this paper, we propose a new authentication method to prevent authentication vulnerability of Claim Token method of Membership Service provide in Private BlockChain. We chose Hyperledger Fabric v1.0 using JWT authentication method of membership service. TOTP, which generate OTP tokens and user authentication codes that generate additional time-based password on existing authentication servers, has been applied to enforce security and two-factor authentication method to provide more secure services.