Biblio
Steganography is defined as the art of hiding secret data in a non-secret digital carrier called cover media. Trading delicate data without assurance against intruders that may intrude on this data is a lethal. In this manner, transmitting delicate information and privileged insights must not rely on upon just the current communications channels insurance advancements. Likewise should make more strides towards information insurance. This article proposes an improved approach for video steganography. The improvement made by searching for exact matching between the secret text and the video frames RGB channels and Random Key -Dependent Data, achieving steganography performance criteria, invisibility, payload/capacity and robustness.
To improve comprehensive performance of denoising range images, an impulsive noise (IN) denoising method with variable windows is proposed in this paper. Founded on several discriminant criteria, the principles of dropout IN detection and outlier IN detection are provided. Subsequently, a nearest non-IN neighbors searching process and an Index Distance Weighted Mean filter is combined for IN denoising. As key factors of adapatablity of the proposed denoising method, the sizes of two windows for outlier INs detection and INs denoising are investigated. Originated from a theoretical model of invader occlusion, variable window is presented for adapting window size to dynamic environment of each point, accompanying with practical criteria of adaptive variable window size determination. Experiments on real range images of multi-line surface are proceeded with evaluations in terms of computational complexity and quality assessment with comparison analysis among a few other popular methods. It is indicated that the proposed method can detect the impulsive noises with high accuracy, meanwhile, denoise them with strong adaptability with the help of variable window.
To deliver sample estimates provided with the necessary probability foundation to permit generalization from the sample data subset to the whole target population being sampled, probability sampling strategies are required to satisfy three necessary not sufficient conditions: 1) All inclusion probabilities be greater than zero in the target population to be sampled. If some sampling units have an inclusion probability of zero, then a map accuracy assessment does not represent the entire target region depicted in the map to be assessed. 2) The inclusion probabilities must be: a) knowable for nonsampled units and b) known for those units selected in the sample: since the inclusion probability determines the weight attached to each sampling unit in the accuracy estimation formulas, if the inclusion probabilities are unknown, so are the estimation weights. This original work presents a novel (to the best of these authors' knowledge, the first) probability sampling protocol for quality assessment and comparison of thematic maps generated from spaceborne/airborne very high resolution images, where: 1) an original Categorical Variable Pair Similarity Index (proposed in two different formulations) is estimated as a fuzzy degree of match between a reference and a test semantic vocabulary, which may not coincide, and 2) both symbolic pixel-based thematic quality indicators (TQIs) and sub-symbolic object-based spatial quality indicators (SQIs) are estimated with a degree of uncertainty in measurement in compliance with the well-known Quality Assurance Framework for Earth Observation (QA4EO) guidelines. Like a decision-tree, any protocol (guidelines for best practice) comprises a set of rules, equivalent to structural knowledge, and an order of presentation of the rule set, known as procedural knowledge. The combination of these two levels of knowledge makes an original protocol worth more than the sum of its parts. The several degrees of novelty of the proposed probability sampling protocol are highlighted in this paper, at the levels of understanding of both structural and procedural knowledge, in comparison with related multi-disciplinary works selected from the existing literature. In the experimental session, the proposed protocol is tested for accuracy validation of preliminary classification maps automatically generated by the Satellite Image Automatic Mapper (SIAM™) software product from two WorldView-2 images and one QuickBird-2 image provided by DigitalGlobe for testing purposes. In these experiments, collected TQIs and SQIs are statistically valid, statistically significant, consistent across maps, and in agreement with theoretical expectations, visual (qualitative) evidence and quantitative quality indexes of operativeness (OQIs) claimed for SIAM™ by related papers. As a subsidiary conclusion, the statistically consistent and statistically significant accuracy validation of the SIAM™ pre-classification maps proposed in this contribution, together with OQIs claimed for SIAM™ by related works, make the operational (automatic, accurate, near real-time, robust, scalable) SIAM™ software product eligible for opening up new inter-disciplinary research and market opportunities in accordance with the visionary goal of the Global Earth Observation System of Systems initiative and the QA4EO international guidelines.