Visible to the public Biblio

Filters: Keyword is Optical pulses  [Clear All Filters]
2022-04-21
Sharma, Purva, Agrawal, Anuj, Bhatia, Vimal, Prakash, Shashi, Mishra, Amit Kumar.  2021.  Quantum Key Distribution Secured Optical Networks: A Survey. IEEE Open Journal of the Communications Society. 2:2049–2083.
Increasing incidents of cyber attacks and evolution of quantum computing poses challenges to secure existing information and communication technologies infrastructure. In recent years, quantum key distribution (QKD) is being extensively researched, and is widely accepted as a promising technology to realize secure networks. Optical fiber networks carry a huge amount of information, and are widely deployed around the world in the backbone terrestrial, submarine, metro, and access networks. Thus, instead of using separate dark fibers for quantum communication, integration of QKD with the existing classical optical networks has been proposed as a cost-efficient solution, however, this integration introduces new research challenges. In this paper, we do a comprehensive survey of the state-of-the-art QKD secured optical networks, which is going to shape communication networks in the coming decades. We elucidate the methods and protocols used in QKD secured optical networks, and describe the process of key establishment. Various methods proposed in the literature to address the networking challenges in QKD secured optical networks, specifically, routing, wavelength and time-slot allocation (RWTA), resiliency, trusted repeater node (TRN) placement, QKD for multicast service, and quantum key recycling are described and compared in detail. This survey begins with the introduction to QKD and its advantages over conventional encryption methods. Thereafter, an overview of QKD is given including quantum bits, basic QKD system, QKD schemes and protocol families along with the detailed description of QKD process based on the Bennett and Brassard-84 (BB84) protocol as it is the most widely used QKD protocol in the literature. QKD system are also prone to some specific types of attacks, hence, we describe the types of quantum hacking attacks on the QKD system along with the methods used to prevent them. Subsequently, the process of point-to-point mechanism of QKD over an optical fiber link is described in detail using the BB84 protocol. Different architectures of QKD secured optical networks are described next. Finally, major findings from this comprehensive survey are summarized with highlighting open issues and challenges in QKD secured optical networks.
Conference Name: IEEE Open Journal of the Communications Society
2019-02-14
Arrazola, J. M., Marwah, A., Lovitz, B., Touchette, D., Lutkenhaus, N..  2018.  Cryptographic and Non-Cryptographic Network Applications and Their Optical Implementations. 2018 IEEE Photonics Society Summer Topical Meeting Series (SUM). :9-10.
The use of quantum mechanical signals in communication opens up the opportunity to build new communication systems that accomplishes tasks that communication with classical signals structures cannot achieve. Prominent examples are Quantum Key Distribution Protocols, which allows the generation of secret keys without computational assumptions of adversaries. Over the past decade, protocols have been developed that achieve tasks that can also be accomplished with classical signals, but the quantum version of the protocol either uses less resources, or leaks less information between the involved parties. The gap between quantum and classical can be exponential in the input size of the problems. Examples are the comparison of data, the scheduling of appointments and others. Until recently, it was thought that these protocols are of mere conceptual value, but that the quantum advantage could not be realized. We changed that by developing quantum optical versions of these abstract protocols that can run with simple laser pulses, beam-splitters and detectors. [1-3] By now the first protocols have been successfully implemented [4], showing that a quantum advantage can be realized. The next step is to find and realize protocols that have a high practical value.