Biblio
Filters: Keyword is quantum key distribution protocols [Clear All Filters]
Quantum-Sim: An Open-Source Co-Simulation Platform for Quantum Key Distribution-Based Smart Grid Communications. 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1—6.
.
2019. Grid modernization efforts with the latest information and communication technologies will significantly benefit smart grids in the coming years. More optical fibre communications between consumers and the control center will promise better demand response and customer engagement, yet the increasing attack surface and man-in-the-middle (MITM) threats can result in security and privacy challenges. Among the studies for more secure smart grid communications, quantum key distribution protocols (QKD) have emerged as a promising option. To bridge the theoretical advantages of quantum communication to its practical utilization, however, comprehensive investigations have to be conducted with realistic cyber-physical smart grid structures and scenarios. To facilitate research in this direction, this paper proposes an open-source, research-oriented co-simulation platform that orchestrates cyber and power simulators under the MOSAIK framework. The proposed platform allows flexible and realistic power flow-based co-simulation of quantum communications and electrical grids, where different cyber and power topologies, QKD protocols, and attack threats can be investigated. Using quantum-based communication under MITM attacks, the paper presented detailed case studies to demonstrate how the platform enables quick setup of a lowvoltage distribution grid, implementation of different protocols and cryptosystems, as well as evaluations of both communication efficiency and security against MITM attacks. The platform has been made available online to empower researchers in the modelling of quantum-based cyber-physical systems, pilot studies on quantum communications in smart grid, as well as improved attack resilience against malicious intruders.
Cryptographic and Non-Cryptographic Network Applications and Their Optical Implementations. 2018 IEEE Photonics Society Summer Topical Meeting Series (SUM). :9-10.
.
2018. The use of quantum mechanical signals in communication opens up the opportunity to build new communication systems that accomplishes tasks that communication with classical signals structures cannot achieve. Prominent examples are Quantum Key Distribution Protocols, which allows the generation of secret keys without computational assumptions of adversaries. Over the past decade, protocols have been developed that achieve tasks that can also be accomplished with classical signals, but the quantum version of the protocol either uses less resources, or leaks less information between the involved parties. The gap between quantum and classical can be exponential in the input size of the problems. Examples are the comparison of data, the scheduling of appointments and others. Until recently, it was thought that these protocols are of mere conceptual value, but that the quantum advantage could not be realized. We changed that by developing quantum optical versions of these abstract protocols that can run with simple laser pulses, beam-splitters and detectors. [1-3] By now the first protocols have been successfully implemented [4], showing that a quantum advantage can be realized. The next step is to find and realize protocols that have a high practical value.