Visible to the public Biblio

Filters: Keyword is machine learning attack  [Clear All Filters]
2021-11-29
Takemoto, Shu, Shibagaki, Kazuya, Nozaki, Yusuke, Yoshikawa, Masaya.  2020.  Deep Learning Based Attack for AI Oriented Authentication Module. 2020 35th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC). :5–8.
Neural Network Physical Unclonable Function (NN-PUF) has been proposed for the secure implementation of Edge AI. This study evaluates the tamper resistance of NN-PUF against machine learning attacks. The machine learning attack in this study learns CPRs using deep learning. As a result of the evaluation experiment, the machine learning attack predicted about 82% for CRPs. Therefore, this study revealed that NN-PUF is vulnerable to machine learning attacks.
2019-02-14
Nozaki, Yusuke, Yoshikawa, Masaya.  2018.  EM Based Machine Learning Attack for XOR Arbiter PUF. Proceedings of the 2Nd International Conference on Machine Learning and Soft Computing. :19-23.

The physical unclonable functions (PUFs) have been attracted attention to prevent semiconductor counterfeits. However, the risk of machine learning attack for an arbiter PUF, which is one of the typical PUFs, has been reported. Therefore, an XOR arbiter PUF, which has a resistance against the machine learning attack, was proposed. However, in recent years, a new machine learning attack using power consumption during the operation of the PUF circuit was reported. Also, it is important that the detailed tamper resistance verification of the PUFs to consider the security of the PUFs in the future. Therefore, this study proposes a new machine learning attack using electromagnetic waveforms for the XOR arbiter PUF. Experiments by an actual device evaluate the validity of the proposed method and the security of the XOR arbiter PUF.