Visible to the public Biblio

Filters: Keyword is Hafnium  [Clear All Filters]
2021-05-20
Narwal, Bhawna, Ojha, Arushi, Goel, Nimisha, Dhawan, Sudipti.  2020.  A Yoking-Proof Based Remote Authentication Scheme for Cloud-Aided Wearable Devices (YPACW). 2020 IEEE International Conference for Innovation in Technology (INOCON). :1—5.

The developments made in IoT applications have made wearable devices a popular choice for collecting user data to monitor this information and provide intelligent service support. Since wearable devices are continuously collecting and transporting a user's sensitive data over the network, there exist increased security challenges. Moreover, wearable devices lack the computation capabilities in comparison to traditional short-range communication devices. In this paper, authors propounded a Yoking Proof based remote Authentication scheme for Cloud-aided Wearable devices (YPACW) which takes PUF and cryptographic functions and joins them to achieve mutual authentication between the wearable devices and smartphone via a cloud server, by performing the simultaneous verification of these devices, using the established yoking-proofs. Relative to Liu et al.'s scheme, YPACW provides better results with the reduction of communication and processing cost significantly.

2021-03-22
Penugonda, S., Yong, S., Gao, A., Cai, K., Sen, B., Fan, J..  2020.  Generic Modeling of Differential Striplines Using Machine Learning Based Regression Analysis. 2020 IEEE International Symposium on Electromagnetic Compatibility Signal/Power Integrity (EMCSI). :226–230.
In this paper, a generic model for a differential stripline is created using machine learning (ML) based regression analysis. A recursive approach of creating various inputs is adapted instead of traditional design of experiments (DoE) approach. This leads to reduction of number of simulations as well as control the data points required for performing simulations. The generic model is developed using 48 simulations. It is comparable to the linear regression model, which is obtained using 1152 simulations. Additionally, a tabular W-element model of a differential stripline is used to take into consideration the frequency-dependent dielectric loss. In order to demonstrate the expandability of this approach, the methodology was applied to two differential pairs of striplines in the frequency range of 10 MHz to 20 GHz.
2019-02-21
Xie, S., Wang, G..  2018.  Optimization of parallel turnings using particle swarm intelligence. 2018 Tenth International Conference on Advanced Computational Intelligence (ICACI). :230–234.
Machining process parameters optimization is of concern in machining fields considering machining cost factor. In order to solve the optimization problem of machining process parameters in parallel turning operations, which aims to reduce the machining cost, two PSO-based optimization approaches are proposed in this paper. According to the divide-and-conquer idea, the problem is divided into some similar sub-problems. A particle swarm optimization then is derived to conquer each sub-problem to find the optimal results. Simulations show that, comparing to other optimization approaches proposed previously, the proposed two PSO-based approaches can get optimal machining parameters to reduce both the machining cost (UC) and the computation time.