Visible to the public Biblio

Filters: Keyword is analogue-digital conversion  [Clear All Filters]
2020-09-14
Zhu, Xiaofeng, Huang, Liang, Wang, Ziqian.  2019.  Dynamic range analysis of one-bit compressive sampling with time-varying thresholds. The Journal of Engineering. 2019:6608–6611.
From the point of view of statistical signal processing, the dynamic range for one-bit quantisers with time-varying thresholds is studied. Maximum tolerable amplitudes, minimum detectable amplitudes and dynamic ranges of this one-bit sampling approach and uniform quantisers, such as N-bits analogue-to-digital converters (ADCs), are derived and simulated. The results reveal that like conventional ADCs, the dynamic ranges of one-bit sampling approach are linearly proportional to the Gaussian noise standard deviations, while one-bit sampling's dynamic ranges are lower than N-bits ADC under the same noise levels.
2019-09-11
Duncan, A., Jiang, L., Swany, M..  2018.  Repurposing SoC Analog Circuitry for Additional COTS Hardware Security. 2018 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :201–204.

This paper introduces a new methodology to generate additional hardware security in commercial off-the-shelf (COTS) system-on-a-chip (SoC) integrated circuits (ICs) that have already been fabricated and packaged. On-chip analog hardware blocks such as analog to digital converters (ADCs), digital to analog converters (DACs) and comparators residing within an SoC are repurposed and connected to one another to generate unique physically unclonable function (PUF) responses. The PUF responses are digitized and processed on-chip to create keys for use in encryption and device authentication activities. Key generation and processing algorithms are presented that minimize the effects of voltage and temperature fluctuations to maximize the repeatability of a key within a device. Experimental results utilizing multiple on-chip analog blocks inside a common COTS microcontroller show reliable key generation with minimal overhead.

2018-02-21
Ivars, Eugene, Armands, Vadim.  2013.  Alias-free compressed signal digitizing and recording on the basis of Event Timer. 2013 21st Telecommunications Forum Telfor (℡FOR). :443–446.

Specifics of an alias-free digitizer application for compressed digitizing and recording of wideband signals are considered. Signal sampling in this case is performed on the basis of picosecond resolution event timing, the digitizer actually is a subsystem of Event Timer A033-ET and specific events that are detected and then timed are the signal and reference sine-wave crossings. The used approach to development of this subsystem is described and some results of experimental studies are given.

2017-02-21
A. Dutta, R. K. Mangang.  2015.  "Analog to information converter based on random demodulation". 2015 International Conference on Electronic Design, Computer Networks Automated Verification (EDCAV). :105-109.

With the increase in signal's bandwidth, the conventional analog to digital converters (ADCs), operating on the basis of Shannon/Nyquist theorem, are forced to work at very high rates leading to low dynamic range and high power consumptions. This paper here tells about one Analog to Information converter developed based on compressive sensing techniques. The high sampling rates, which is the main drawback for ADCs, is being successfully reduced to 4 times lower than the conventional rates. The system is also accompanied with the advantage of low power dissipation.

2015-05-04
Chitnis, P.V., Lloyd, H., Silverman, R.H..  2014.  An adaptive interferometric sensor for all-optical photoacoustic microscopy. Ultrasonics Symposium (IUS), 2014 IEEE International. :353-356.

Conventional photoacoustic microscopy (PAM) involves detection of optically induced thermo-elastic waves using ultrasound transducers. This approach requires acoustic coupling and the spatial resolution is limited by the focusing properties of the transducer. We present an all-optical PAM approach that involved detection of the photoacoustically induced surface displacements using an adaptive, two-wave mixing interferometer. The interferometer consisted of a 532-nm, CW laser and a Bismuth Silicon Oxide photorefractive crystal (PRC) that was 5×5×5 mm3. The laser beam was expanded to 3 mm and split into two paths, a reference beam that passed directly through the PRC and a signal beam that was focused at the surface through a 100-X, infinity-corrected objective and returned to the PRC. The PRC matched the wave front of the reference beam to that of the signal beam for optimal interference. The interference of the two beams produced optical-intensity modulations that were correlated with surface displacements. A GHz-bandwidth photoreceiver, a low-noise 20-dB amplifier, and a 12-bit digitizer were employed for time-resolved detection of the surface-displacement signals. In combination with a 5-ns, 532-nm pump laser, the interferometric probe was employed for imaging ink patterns, such as a fingerprint, on a glass slide. The signal beam was focused at a reflective cover slip that was separated from the fingerprint by 5 mm of acoustic-coupling gel. A 3×5 mm2 area of the coverslip was raster scanned with 100-μm steps and surface-displacement signals at each location were averaged 20 times. Image reconstruction based on time reversal of the PA-induced displacement signals produced the photoacoustic image of the ink patterns. The reconstructed image of the fingerprint was consistent with its photograph, which demonstrated the ability of our system to resolve micron-scaled features at a depth of 5 mm.

2015-05-01
Poberezhskiy, Y.S., Poberezhskiy, G.Y..  2014.  Impact of the sampling theorem interpretations on digitization and reconstruction in SDRs and CRs. Aerospace Conference, 2014 IEEE. :1-20.

Sampling and reconstruction (S&R) are used in virtually all areas of science and technology. The classical sampling theorem is a theoretical foundation of S&R. However, for a long time, only sampling rates and ways of the sampled signals representation were derived from it. The fact that the design of S&R circuits (SCs and RCs) is based on a certain interpretation of the sampling theorem was mostly forgotten. The traditional interpretation of this theorem was selected at the time of the theorem introduction because it offered the only feasible way of S&R realization then. At that time, its drawbacks did not manifest themselves. By now, this interpretation has largely exhausted its potential and inhibits future progress in the field. This tutorial expands the theoretical foundation of S&R. It shows that the traditional interpretation, which is indirect, can be replaced by the direct one or by various combinations of the direct and indirect interpretations that enable development of novel SCs and RCs (NSCs and NRCs) with advanced properties. The tutorial explains the basic principles of the NSCs and NRCs design, their advantages, as well as theoretical problems and practical challenges of their realization. The influence of the NSCs and NRCs on the architectures of SDRs and CRs is also discussed.