Visible to the public Biblio

Filters: Keyword is power system analysis computing  [Clear All Filters]
2020-08-24
LV, Zhining, HU, Ziheng, NING, Baifeng, DING, Lifu, Yan, Gangfeng, SHI, Xiasheng.  2019.  Non-intrusive Runtime Monitoring for Power System Intelligent Terminal Based on Improved Deep Belief Networks (I-DBN). 2019 4th International Conference on Power and Renewable Energy (ICPRE). :361–365.
Power system intelligent terminal equipment is widely used in real-time monitoring, data acquisition, power management, power distribution and other tasks of smart grid. The power system intelligent terminal can obtain various information of users and power companies in the power grid, but there is still a lack of protection means for the connection and communication process of the terminal components. In this paper, a novel method based on improved deep belief network(IDBN) is proposed to accomplish the business-level security monitoring and attack detection of power system terminal. A non-intrusive business-level monitoring platform for power system terminals is established, which uses energy metering intelligent terminals as an example for non-intrusive data collection. Based on this platform, the I-DBN extracts the spatial and temporal attack characteristics of the external monitoring data of the system. Some fault conditions and cyber attacks of the model have been simulated to demonstrate the effectiveness of the proposed detection method and the results show excellent performance. The method and platform proposed in this paper can be extended to other services in the power industry, providing a theoretical basis and implementation method for realizing the security monitoring of power system intelligent terminals from the business level.
2020-01-20
Wu, Yanjuan, Wang, Haoyue, Yang, Li.  2019.  Research on Modeling Method of Visualized Plane Topology in Electric Power System. 2019 Chinese Control Conference (CCC). :7263–7268.

Aiming at the realization of power system visualization plane topology modeling, a development method of Microsoft Foundation Classes application framework based on Microsoft Visual Studio is proposed. The overall platform development is mainly composed of five modules: the primitive library module, the platform interface module, the model array file module, the topology array file module, and the algorithm module. The software developed by this method can realize the user-defined power system modeling, and can realize power system operation analysis by combining with algorithm. The proposed method has a short development cycle, compatibility and expandability. This method is applied to the development of a plane topology modeling platform for the distribution network system, which further demonstrates the feasibility of this method.

2019-03-04
Iqbal, A., Mahmood, F., Shalaginov, A., Ekstedt, M..  2018.  Identification of Attack-based Digital Forensic Evidences for WAMPAC Systems. 2018 IEEE International Conference on Big Data (Big Data). :3079–3087.
Power systems domain has generally been very conservative in terms of conducting digital forensic investigations, especially so since the advent of smart grids. This lack of research due to a multitude of challenges has resulted in absence of knowledge base and resources to facilitate such an investigation. Digitalization in the form of smart grids is upon us but in case of cyber-attacks, attribution to such attacks is challenging and difficult if not impossible. In this research, we have identified digital forensic artifacts resulting from a cyber-attack on Wide Area Monitoring, Protection and Control (WAMPAC) systems, which will help an investigator attribute an attack using the identified evidences. The research also shows the usage of sandboxing for digital forensics along with hardware-in-the-loop (HIL) setup. This is first of its kind effort to identify and acquire all the digital forensic evidences for WAMPAC systems which will ultimately help in building a body of knowledge and taxonomy for power system forensics.