Visible to the public Biblio

Filters: Keyword is security development lifecycle  [Clear All Filters]
2020-10-12
Eckhart, Matthias, Ekelhart, Andreas, Lüder, Arndt, Biffl, Stefan, Weippl, Edgar.  2019.  Security Development Lifecycle for Cyber-Physical Production Systems. IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society. 1:3004–3011.

As the connectivity within manufacturing processes increases in light of Industry 4.0, information security becomes a pressing issue for product suppliers, systems integrators, and asset owners. Reaching new heights in digitizing the manufacturing industry also provides more targets for cyber attacks, hence, cyber-physical production systems (CPPSs) must be adequately secured to prevent malicious acts. To achieve a sufficient level of security, proper defense mechanisms must be integrated already early on in the systems' lifecycle and not just eventually in the operation phase. Although standardization efforts exist with the objective of guiding involved stakeholders toward the establishment of a holistic industrial security concept (e.g., IEC 62443), a dedicated security development lifecycle for systems integrators is missing. This represents a major challenge for engineers who lack sufficient information security knowledge, as they may not be able to identify security-related activities that can be performed along the production systems engineering (PSE) process. In this paper, we propose a novel methodology named Security Development Lifecycle for Cyber-Physical Production Systems (SDL-CPPS) that aims to foster security by design for CPPSs, i.e., the engineering of smart production systems with security in mind. More specifically, we derive security-related activities based on (i) security standards and guidelines, and (ii) relevant literature, leading to a security-improved PSE process that can be implemented by systems integrators. Furthermore, this paper informs domain experts on how they can conduct these security-enhancing activities and provides pointers to relevant works that may fill the potential knowledge gap. Finally, we review the proposed approach by means of discussions in a workshop setting with technical managers of an Austrian-based systems integrator to identify barriers to adopting the SDL-CPPS.

2019-03-04
Kannavara, R., Vangore, J., Roberts, W., Lindholm, M., Shrivastav, P..  2018.  Automating Threat Intelligence for SDL. 2018 IEEE Cybersecurity Development (SecDev). :137–137.
Threat intelligence is very important in order to execute a well-informed Security Development Lifecycle (SDL). Although there are many readily available solutions supporting tactical threat intelligence focusing on enterprise Information Technology (IT) infrastructure, the lack of threat intelligence solutions focusing on SDL is a known gap which is acknowledged by the security community. To address this shortcoming, we present a solution to automate the process of mining open source threat information sources to deliver product specific threat indicators designed to strategically inform the SDL while continuously monitoring for disclosures of relevant potential vulnerabilities during product design, development, and beyond deployment.