Visible to the public Biblio

Filters: Keyword is Probability distribution  [Clear All Filters]
2023-09-01
Gu, Yujie, Akao, Sonata, Esfahani, Navid Nasr, Miao, Ying, Sakurai, Kouichi.  2022.  On the Security Properties of Combinatorial All-or-nothing Transforms. 2022 IEEE International Symposium on Information Theory (ISIT). :1447—1452.
All-or-nothing transforms (AONT) were proposed by Rivest as a message preprocessing technique for encrypting data to protect against brute-force attacks, and have many applications in cryptography and information security. Later the unconditionally secure AONT and their combinatorial characterization were introduced by Stinson. Informally, a combinatorial AONT is an array with the unbiased requirements and its security properties in general depend on the prior probability distribution on the inputs s-tuples. Recently, it was shown by Esfahani and Stinson that a combinatorial AONT has perfect security provided that all the inputs s-tuples are equiprobable, and has weak security provided that all the inputs s-tuples are with non-zero probability. This paper aims to explore on the gap between perfect security and weak security for combinatorial (t, s, v)-AONTs. Concretely, we consider the typical scenario that all the s inputs take values independently (but not necessarily identically) and quantify the amount of information H(\textbackslashmathcalX\textbackslashmid \textbackslashmathcalY) about any t inputs \textbackslashmathcalX that is not revealed by any s−t outputs \textbackslashmathcalY. In particular, we establish the general lower and upper bounds on H(\textbackslashmathcalX\textbackslashmid \textbackslashmathcalY) for combinatorial AONTs using information-theoretic techniques, and also show that the derived bounds can be attained in certain cases.
2023-01-13
Hammar, Kim, Stadler, Rolf.  2022.  A System for Interactive Examination of Learned Security Policies. NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium. :1–3.
We present a system for interactive examination of learned security policies. It allows a user to traverse episodes of Markov decision processes in a controlled manner and to track the actions triggered by security policies. Similar to a software debugger, a user can continue or or halt an episode at any time step and inspect parameters and probability distributions of interest. The system enables insight into the structure of a given policy and in the behavior of a policy in edge cases. We demonstrate the system with a network intrusion use case. We examine the evolution of an IT infrastructure’s state and the actions prescribed by security policies while an attack occurs. The policies for the demonstration have been obtained through a reinforcement learning approach that includes a simulation system where policies are incrementally learned and an emulation system that produces statistics that drive the simulation runs.
2022-12-09
Cody, Tyler, Adams, Stephen, Beling, Peter, Freeman, Laura.  2022.  On Valuing the Impact of Machine Learning Faults to Cyber-Physical Production Systems. 2022 IEEE International Conference on Omni-layer Intelligent Systems (COINS). :1—6.
Machine learning (ML) has been applied in prognostics and health management (PHM) to monitor and predict the health of industrial machinery. The use of PHM in production systems creates a cyber-physical, omni-layer system. While ML offers statistical improvements over previous methods, and brings statistical models to bear on new systems and PHM tasks, it is susceptible to performance degradation when the behavior of the systems that ML is receiving its inputs from changes. Natural changes such as physical wear and engineered changes such as maintenance and rebuild procedures are catalysts for performance degradation, and are both inherent to production systems. Drawing from data on the impact of maintenance procedures on ML performance in hydraulic actuators, this paper presents a simulation study that investigates how long it takes for ML performance degradation to create a difference in the throughput of serial production system. In particular, this investigation considers the performance of an ML model learned on data collected before a rebuild procedure is conducted on a hydraulic actuator and an ML model transfer learned on data collected after the rebuild procedure. Transfer learning is able to mitigate performance degradation, but there is still a significant impact on throughput. The conclusion is drawn that ML faults can have drastic, non-linear effects on the throughput of production systems.
2022-12-01
Andersen, Erik, Chiarandini, Marco, Hassani, Marwan, Jänicke, Stefan, Tampakis, Panagiotis, Zimek, Arthur.  2022.  Evaluation of Probability Distribution Distance Metrics in Traffic Flow Outlier Detection. 2022 23rd IEEE International Conference on Mobile Data Management (MDM). :64—69.

Recent approaches have proven the effectiveness of local outlier factor-based outlier detection when applied over traffic flow probability distributions. However, these approaches used distance metrics based on the Bhattacharyya coefficient when calculating probability distribution similarity. Consequently, the limited expressiveness of the Bhattacharyya coefficient restricted the accuracy of the methods. The crucial deficiency of the Bhattacharyya distance metric is its inability to compare distributions with non-overlapping sample spaces over the domain of natural numbers. Traffic flow intensity varies greatly, which results in numerous non-overlapping sample spaces, rendering metrics based on the Bhattacharyya coefficient inappropriate. In this work, we address this issue by exploring alternative distance metrics and showing their applicability in a massive real-life traffic flow data set from 26 vital intersections in The Hague. The results on these data collected from 272 sensors for more than two years show various advantages of the Earth Mover's distance both in effectiveness and efficiency.

2022-10-20
Al-Haija, Qasem Abu.  2021.  On the Security of Cyber-Physical Systems Against Stochastic Cyber-Attacks Models. 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS). :1—6.
Cyber Physical Systems (CPS) are widely deployed and employed in many recent real applications such as automobiles with sensing technology for crashes to protect passengers, automated homes with various smart appliances and control units, and medical instruments with sensing capability of glucose levels in blood to keep track of normal body function. In spite of their significance, CPS infrastructures are vulnerable to cyberattacks due to the limitations in the computing, processing, memory, power, and transmission capabilities for their endpoint/edge appliances. In this paper, we consider a short systematic investigation for the models and techniques of cyberattacks and threats rate against Cyber Physical Systems with multiple subsystems and redundant elements such as, network of computing devices or storage modules. The cyberattacks are assumed to be externally launched against the Cyber Physical System during a prescribed operational time unit following stochastic distribution models such as Poisson probability distribution, negative-binomial probability distribution and other that have been extensively employed in the literature and proved their efficiency in modeling system attacks and threats.
2022-07-05
Parizad, Ali, Hatziadoniu, Constantine.  2021.  False Data Detection in Power System Under State Variables' Cyber Attacks Using Information Theory. 2021 IEEE Power and Energy Conference at Illinois (PECI). :1—8.
State estimation (SE) plays a vital role in the reliable operation of modern power systems, gives situational awareness to the operators, and is employed in different functions of the Energy Management System (EMS), such as Optimal Power Flow (OPF), Contingency Analysis (CA), power market mechanism, etc. To increase SE's accuracy and protect it from compromised measurements, Bad Data Detection (BDD) algorithm is employed. However, the integration of Information and Communication Technologies (ICT) into the modern power system makes it a complicated cyber-physical system (CPS). It gives this opportunity to an adversary to find some loopholes and flaws, penetrate to CPS layer, inject false data, bypass existing BDD schemes, and consequently, result in security and stability issues. This paper employs a semi-supervised learning method to find normal data patterns and address the False Data Injection Attack (FDIA) problem. Based on this idea, the Probability Distribution Functions (PDFs) of measurement variations are derived for training and test data sets. Two distinct indices, i.e., Absolute Distance (AD) and Relative Entropy (RE), a concept in Information Theory, are utilized to find the distance between these two PDFs. In case an intruder compromises data, the related PDF changes. However, we demonstrate that AD fails to detect these changes. On the contrary, the RE index changes significantly and can properly detect FDIA. This proposed method can be used in a real-time attack detection process where the larger RE index indicates the possibility of an attack on the real-time data. To investigate the proposed methodology's effectiveness, we utilize the New York Independent System Operator (NYISO) data (Jan.-Dec. 2019) with a 5-minute resolution and map it to the IEEE 14-bus test system, and prepare an appropriate data set. After that, two different case studies (attacks on voltage magnitude ( Vm), and phase angle (θ)) with different attack parameters (i.e., 0.90, 0.95, 0.98, 1.02, 1.05, and 1.10) are defined to assess the impact of an attack on the state variables at different buses. The results show that RE index is a robust and reliable index, appropriate for real-time applications, and can detect FDIA in most of the defined case studies.
2022-04-18
Aiyar, Kamalani, Halgamuge, Malka N., Mohammad, Azeem.  2021.  Probability Distribution Model to Analyze the Trade-off between Scalability and Security of Sharding-Based Blockchain Networks. 2021 IEEE 18th Annual Consumer Communications Networking Conference (CCNC). :1–6.
Sharding is considered to be the most promising solution to overcome and to improve the scalability limitations of blockchain networks. By doing this, the transaction throughput increases, at the same time compromises the security of blockchain networks. In this paper, a probability distribution model is proposed to analyze this trade-off between scalability and security of sharding-based blockchain networks. For this purpose hypergeometric distribution and Chebyshev's Inequality are mainly used. The upper bounds of hypergeometric distributed transaction processing and failure probabilities for shards are mainly evaluated. The model validation is accomplished with Class A (Omniledger, Elastico, Harmony, and Zilliqa), and Class B (RapidChain) sharding protocols. This validation shows that Class B protocols have a better performance compared to Class A protocols. The proposed model observes the transaction processing and failure probabilities are increased when shard size is reduced or the number of shards increased in sharding-based blockchain networks. This trade-off between the scalability and the security decides on the shard size of the blockchain network based on the real-world application and the blockchain platform. This explains the scalability trilemma in blockchain networks claiming that decentralization, scalability, and security cannot be met at primary grounds. In conclusion, this paper presents a comprehensive analysis providing essential directions to develop sharding protocols in the future to enhance the performance and the best-cost benefit of sharing-based blockchains by improving the scalability and the security at the same time.
2022-02-09
Zhao, Pengyuan, Yang, Shengqi, Chen, Zheng.  2021.  Relationship Anonymity Evaluation Model Based on Markov Chain. 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). :671–676.
In this paper, we propose a relational anonymous P2P communication network evaluation model based on Markov chain (AEMC), and show how to extend our model to the anonymous evaluation of sender and receiver relationship anonymity when the attacker attacks the anonymous P2P communication network and obtains some information. Firstly, the constraints of the evaluation model (the attacker assumption for message tracing) are specified in detail; then the construction of AEMC anonymous evaluation model and the specific evaluation process are described; finally, the simulation experiment is carried out, and the evaluation model is applied to the probabilistic anonymous evaluation of the sender and receiver relationship of the attacker model, and the evaluation is carried out from the perspective of user (message).
2021-11-08
Qaisar, Muhammad Umar Farooq, Wang, Xingfu, Hawbani, Ammar, Khan, Asad, Ahmed, Adeel, Wedaj, Fisseha Teju.  2020.  TORP: Load Balanced Reliable Opportunistic Routing for Asynchronous Wireless Sensor Networks. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1384–1389.
Opportunistic routing (OR) is gaining popularity in low-duty wireless sensor network (WSN), so the need for efficient and reliable data transmission is becoming more essential. Reliable transmission is only feasible if the routing protocols are secure and efficient. Due to high energy consumption, current cryptographic schemes for WSN are not suitable. Trust-based OR will ensure security and reliability with fewer resources and minimum energy consumption. OR selects the set of potential candidates for each sensor node using a prioritized metric by load balancing among the nodes. This paper introduces a trust-based load-balanced OR for duty-cycled wireless sensor networks. The candidates are prioritized on the basis of a trusted OR metric that is divided into two parts. First, the OR metric is based on the average of four probability distributions: the distance from node to sink distribution, the expected number of hops distribution, the node degree distribution, and the residual energy distribution. Second, the trust metric is based on the average of two probability distributions: the direct trust distribution and the recommended trust distribution. Finally, the trusted OR metric is calculated by multiplying the average of two metrics distributions in order to direct more traffic through the higher priority nodes. The simulation results show that our proposed protocol provides a significant improvement in the performance of the network compared to the benchmarks in terms of energy consumption, end to end delay, throughput, and packet delivery ratio.
2021-06-01
Patnaikuni, Shrinivasan, Gengaje, Sachin.  2020.  Properness and Consistency of Syntactico-Semantic Reasoning using PCFG and MEBN. 2020 International Conference on Communication and Signal Processing (ICCSP). :0554–0557.
The paper proposes a formal approach for parsing grammatical derivations in the context of the principle of semantic compositionality by defining a mapping between Probabilistic Context Free Grammar (PCFG) and Multi Entity Bayesian Network (MEBN) theory, which is a first-order logic for modelling probabilistic knowledge bases. The principle of semantic compositionality states that meaning of compound expressions is dependent on meanings of constituent expressions forming the compound expression. Typical pattern analysis applications focus on syntactic patterns ignoring semantic patterns governing the domain in which pattern analysis is attempted. The paper introduces the concepts and terminologies of the mapping between PCFG and MEBN theory. Further the paper outlines a modified version of CYK parser algorithm for parsing PCFG derivations driven by MEBN. Using Kullback- Leibler divergence an outline for proving properness and consistency of the PCFG mapped with MEBN is discussed.
2021-02-16
Navabi, S., Nayyar, A..  2020.  A Dynamic Mechanism for Security Management in Multi-Agent Networked Systems. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :1628—1637.
We study the problem of designing a dynamic mechanism for security management in an interconnected multi-agent system with N strategic agents and one coordinator. The system is modeled as a network of N vertices. Each agent resides in one of the vertices of the network and has a privately known security state that describes its safety level at each time. The evolution of an agent's security state depends on its own state, the states of its neighbors in the network and on actions taken by a network coordinator. Each agent's utility at time instant t depends on its own state, the states of its neighbors in the network and on actions taken by a network coordinator. The objective of the network coordinator is to take security actions in order to maximize the long-term expected social surplus. Since agents are strategic and their security states are private information, the coordinator needs to incentivize agents to reveal their information. This results in a dynamic mechanism design problem for the coordinator. We leverage the inter-temporal correlations between the agents' security states to identify sufficient conditions under which an incentive compatible expected social surplus maximizing mechanism can be constructed. We then identify two special cases of our formulation and describe how the desired mechanism is constructed in these cases.
2021-01-15
Khodabakhsh, A., Busch, C..  2020.  A Generalizable Deepfake Detector based on Neural Conditional Distribution Modelling. 2020 International Conference of the Biometrics Special Interest Group (BIOSIG). :1—5.
Photo- and video-realistic generation techniques have become a reality following the advent of deep neural networks. Consequently, there are immense concerns regarding the difficulty in differentiating what content is real from what is synthetic. An example of video-realistic generation techniques is the infamous Deepfakes, which exploit the main modality by which humans identify each other. Deepfakes are a category of synthetic face generation methods and are commonly based on generative adversarial networks. In this article, we propose a novel two-step synthetic face image detection method in which general-purpose features are extracted in a first step, trivializing the task of detecting synthetic images. The anomaly detector predicts the conditional probabilities for observing every individual pixel in the image and is trained on pristine data only. The extracted anomaly features demonstrate true generalization capacity across widely different unknown synthesis methods while showing a minimal loss in performance with regard to the detection of known synthetic samples.
2020-11-02
Ma, Y., Bai, X..  2019.  Comparison of Location Privacy Protection Schemes in VANETs. 2019 12th International Symposium on Computational Intelligence and Design (ISCID). 2:79–83.
Vehicular Ad-hoc Networks (VANETs) is a traditional mobile ad hoc network (MANET) used on traffic roads and it is a special mobile ad hoc network. As an intelligent transportation system, VANETs can solve driving safety and provide value-added services. Therefore, the application of VANETs can improve the safety and efficiency of road traffic. Location services are in a crucial position for the development of VANETs. VANETs has the characteristics of open access and wireless communication. Malicious node attacks may lead to the leakage of user privacy in VANETs, thus seriously affecting the use of VANETs. Therefore, the location privacy issue of VANETs cannot be ignored. This paper classifies the attack methods in VANETs, and summarizes and compares the location privacy protection techniques proposed in the existing research.
2020-10-05
Yu, Zihuan.  2018.  Research on Cloud Computing Security Evaluation Model Based on Trust Management. 2018 IEEE 4th International Conference on Computer and Communications (ICCC). :1934—1937.

At present, cloud computing technology has made outstanding contributions to the Internet in data unification and sharing applications. However, the problem of information security in cloud computing environment has to be paid attention to and effective measures have to be taken to solve it. In order to control the data security under cloud services, the DS evidence theory method is introduced. The trust management mechanism is established from the source of big data, and a cloud computing security assessment model is constructed to achieve the quantifiable analysis purpose of cloud computing security assessment. Through the simulation, the innovative way of quantifying the confidence criterion through big data trust management and DS evidence theory not only regulates the data credible quantification mechanism under cloud computing, but also improves the effectiveness of cloud computing security assessment, providing a friendly service support platform for subsequent cloud computing service.

2020-06-29
Ateş, Çağatay, Özdel, Süleyman, Yıldırım, Metehan, Anarım, Emin.  2019.  DDoS Attack Detection Using Greedy Algorithm and Frequency Modulation. 2019 27th Signal Processing and Communications Applications Conference (SIU). :1–4.
Distributed Denial of Service (DDoS) attack is one of the major threats to the network services. In this paper, we propose a DDoS attack detection algorithm based on the probability distributions of source IP addresses and destination IP addresses. According to the behavior of source and destination IP addresses during DDoS attack, the distance between these features is calculated and used.It is calculated with using the Greedy algorithm which eliminates some requirements associated with Kullback-Leibler divergence such as having the same rank of the probability distributions. Then frequency modulation is proposed in the detection phase to reduce false alarm rates and to avoid using static threshold. This algorithm is tested on the real data collected from Boğaziçi University network.
2020-06-02
Kibloff, David, Perlaza, Samir M., Wang, Ligong.  2019.  Embedding Covert Information on a Given Broadcast Code. 2019 IEEE International Symposium on Information Theory (ISIT). :2169—2173.

Given a code used to send a message to two receivers through a degraded discrete memoryless broadcast channel (DM-BC), the sender wishes to alter the codewords to achieve the following goals: (i) the original broadcast communication continues to take place, possibly at the expense of a tolerable increase of the decoding error probability; and (ii) an additional covert message can be transmitted to the stronger receiver such that the weaker receiver cannot detect the existence of this message. The main results are: (a) feasibility of covert communications is proven by using a random coding argument for general DM-BCs; and (b) necessary conditions for establishing covert communications are described and an impossibility (converse) result is presented for a particular class of DM-BCs. Together, these results characterize the asymptotic fundamental limits of covert communications for this particular class of DM-BCs within an arbitrarily small gap.

2019-05-20
Goncharov, N. I., Goncharov, I. V., Parinov, P. A., Dushkin, A. V., Maximova, M. M..  2019.  Modeling of Information Processes for Modern Information System Security Assessment. 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :1758-1763.

A new approach of a formalism of hybrid automatons has been proposed for the analysis of conflict processes between the information system and the information's security malefactor. An example of probability-based assessment on malefactor's victory has been given and the possibility to abstract from a specific type of probability density function for the residence time of parties to the conflict in their possible states. A model of the distribution of destructive informational influences in the information system to connect the process of spread of destructive information processes and the process of changing subjects' states of the information system has been proposed. An example of the destructive information processes spread analysis has been given.

2019-01-16
Carlini, N., Wagner, D..  2018.  Audio Adversarial Examples: Targeted Attacks on Speech-to-Text. 2018 IEEE Security and Privacy Workshops (SPW). :1–7.
We construct targeted audio adversarial examples on automatic speech recognition. Given any audio waveform, we can produce another that is over 99.9% similar, but transcribes as any phrase we choose (recognizing up to 50 characters per second of audio). We apply our white-box iterative optimization-based attack to Mozilla's implementation DeepSpeech end-to-end, and show it has a 100% success rate. The feasibility of this attack introduce a new domain to study adversarial examples.
2018-09-28
Jung, Taebo, Jung, Kangsoo, Park, Sehwa, Park, Seog.  2017.  A noise parameter configuration technique to mitigate detour inference attack on differential privacy. 2017 IEEE International Conference on Big Data and Smart Computing (BigComp). :186–192.

Nowadays, data has become more important as the core resource for the information society. However, with the development of data analysis techniques, the privacy violation such as leakage of sensitive data and personal identification exposure are also increasing. Differential privacy is the technique to satisfy the requirement that any additional information should not be disclosed except information from the database itself. It is well known for protecting the privacy from arbitrary attack. However, recent research argues that there is a several ways to infer sensitive information from data although the differential privacy is applied. One of this inference method is to use the correlation between the data. In this paper, we investigate the new privacy threats using attribute correlation which are not covered by traditional studies and propose a privacy preserving technique that configures the differential privacy's noise parameter to solve this new threat. In the experiment, we show the weaknesses of traditional differential privacy method and validate that the proposed noise parameter configuration method provide a sufficient privacy protection and maintain an accuracy of data utility.

2018-07-06
Du, Xiaojiang.  2004.  Using k-nearest neighbor method to identify poison message failure. IEEE Global Telecommunications Conference, 2004. GLOBECOM '04. 4:2113–2117Vol.4.

Poison message failure is a mechanism that has been responsible for large scale failures in both telecommunications and IP networks. The poison message failure can propagate in the network and cause an unstable network. We apply a machine learning, data mining technique in the network fault management area. We use the k-nearest neighbor method to identity the poison message failure. We also propose a "probabilistic" k-nearest neighbor method which outputs a probability distribution about the poison message. Through extensive simulations, we show that the k-nearest neighbor method is very effective in identifying the responsible message type.

2018-06-11
Zabib, D. Z., Levi, I., Fish, A., Keren, O..  2017.  Secured Dual-Rail-Precharge Mux-based (DPMUX) symmetric-logic for low voltage applications. 2017 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S). :1–2.

Hardware implementations of cryptographic algorithms may leak information through numerous side channels, which can be used to reveal the secret cryptographic keys, and therefore compromise the security of the algorithm. Power Analysis Attacks (PAAs) [1] exploit the information leakage from the device's power consumption (typically measured on the supply and/or ground pins). Digital circuits consume dynamic switching energy when data propagate through the logic in each new calculation (e.g. new clock cycle). The average power dissipation of a design can be expressed by: Ptot(t) = α · (Pd(t) + Ppvt(t)) (1) where α is the activity factor (the probability that the gate will switch) and depends on the probability distribution of the inputs to the combinatorial logic. This induces a linear relationship between the power and the processed data [2]. Pd is the deterministic power dissipated by the switching of the gate, including any parasitic and intrinsic capacitances, and hence can be evaluated prior to manufacturing. Ppvt is the change in expected power consumption due to nondeterministic parameters such as process variations, mismatch, temperature, etc. In this manuscript, we describe the design of logic gates that induce data-independent (constant) α and Pd.

2017-03-08
Shen, M., Liu, F..  2015.  Query of Uncertain QoS of Web Service. 2015 IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Communications and Its Associate. :1780–1785.

Quality of service (QoS) has been considered as a significant criterion for querying among functionally similar web services. Most researches focus on the search of QoS under certain data which may not cover some practical scenarios. Recent approaches for uncertain QoS of web service deal with discrete data domain. In this paper, we try to build the search of QoS under continuous probability distribution. We offer the definition of two kinds of queries under uncertain QoS and form the optimization approaches for specific distributions. Based on that, the search is extended to general cases. With experiments, we show the feasibility of the proposed methods.

2015-05-06
Boruah, A., Hazarika, S.M..  2014.  An MEBN framework as a dynamic firewall's knowledge flow architecture. Signal Processing and Integrated Networks (SPIN), 2014 International Conference on. :249-254.

Dynamic firewalls with stateful inspection have added a lot of security features over the stateless traditional static filters. Dynamic firewalls need to be adaptive. In this paper, we have designed a framework for dynamic firewalls based on probabilistic ontology using Multi Entity Bayesian Networks (MEBN) logic. MEBN extends ordinary Bayesian networks to allow representation of graphical models with repeated substructures and can express a probability distribution over models of any consistent first order theory. The motivation of our proposed work is about preventing novel attacks (i.e. those attacks for which no signatures have been generated yet). The proposed framework is in two important parts: first part is the data flow architecture which extracts important connection based features with the prime goal of an explicit rule inclusion into the rule base of the firewall; second part is the knowledge flow architecture which uses semantic threat graph as well as reasoning under uncertainty to fulfill the required objective of providing futuristic threat prevention technique in dynamic firewalls.

2015-05-01
Koga, H., Honjo, S..  2014.  A secret sharing scheme based on a systematic Reed-Solomon code and analysis of its security for a general class of sources. Information Theory (ISIT), 2014 IEEE International Symposium on. :1351-1355.

In this paper we investigate a secret sharing scheme based on a shortened systematic Reed-Solomon code. In the scheme L secrets S1, S2, ..., SLand n shares X1, X2, ..., Xn satisfy certain n - k + L linear equations. Security of such a ramp secret sharing scheme is analyzed in detail. We prove that this scheme realizes a (k; n)-threshold scheme for the case of L = 1 and a ramp (k, L, n)-threshold scheme for the case of 2 ≤ L ≤ k - 1 under a certain assumption on S1, S2, ..., SL.