Biblio
The potential risk of agricultural product supply chain is huge because of the complex attributes specific to it. Actually the safety incidents of edible agricultural product emerge frequently in recent years, which expose the fragility of the agricultural product supply chain. In this paper the possible risk factors in agricultural product supply chain is analyzed in detail, the agricultural product supply chain risk evaluation index system and evaluation model are established, and an empirical analysis is made using BP neural network method. The results show that the risk ranking of the simulated evaluation is consistent with the target value ranking, and the risk assessment model has a good generalization and extension ability, and the model has a good reference value for preventing agricultural product supply chain risk.
The aim of this paper is to present a fresh methodology of improved evidence synthesis for assessing software trustworthiness, which can unwind collisions stemming from proofs and these proofs' own uncertainties. To achieve this end, the paper, on the ground of ISO/IEC 9126 and web software attributes, models the indicator framework by factor analysis. Then, the paper conducts an calculation of the weight for each indicator via the technique of structural entropy and makes a fuzzy judgment matrix concerning specialists' comments. This study performs a computation of scoring and grade regarding software trustworthiness by using of the criterion concerning confidence degree discernment and comes up with countermeasures to promote trustworthiness. Relying on online accounting software, this study makes an empirical analysis to further confirm validity and robustness. This paper concludes with pointing out limitations.