Biblio
Due to safety concerns and legislation implemented by various governments, the maritime sector adopted Automatic Identification System (AIS). Whilst governments and state agencies have an increasing reliance on AIS data, the underlying technology can be found to be fundamentally insecure. This study identifies and describes a number of potential attack vectors and suggests conceptual countermeasures to mitigate such attacks. With interception by Navy and Coast Guard as well as marine navigation and obstacle avoidance, the vulnerabilities within AIS call into question the multiple deployed overlapping AIS networks, and what the future holds for the protocol.
This paper proposes an audio watermarking algorithm having good balance between perceptual transparency, robustness, and payload. The proposed algorithm is based on Cordic QR decomposition and multi-resolution decomposition meeting all the necessary audio watermarking design requirements. The use of Cordic QR decomposition provides good robustness and use of detailed coefficients of multi-resolution decomposition help to obtain good transparency at high payload. Also, the proposed algorithm does not require original signal or the embedded watermark for extraction. The binary data embedding capacity of the proposed algorithm is 960.4 bps and the highest SNR obtained is 35.1380 dB. The results obtained in this paper show that the proposed method has good perceptual transparency, high payload and robustness under various audio signal processing attacks.
Most of the Depth Image Based Rendering (DIBR) techniques produce synthesized images which contain nonuniform geometric distortions affecting edges coherency. This type of distortions are challenging for common image quality metrics. Morphological filters maintain important geometric information such as edges across different resolution levels. In this paper, morphological wavelet peak signal-to-noise ratio measure, MW-PSNR, based on morphological wavelet decomposition is proposed to tackle the evaluation of DIBR synthesized images. It is shown that MW-PSNR achieves much higher correlation with human judgment compared to the state-of-the-art image quality measures in this context.
The ultrafast active cavitation imaging (UACI) based on plane wave can be implemented with high frame rate, in which adaptive beamforming technique was introduced to enhance resolutions and signal-to-noise ratio (SNR) of images. However, regular adaptive beamforming continuously updates the spatial filter for each sample point, which requires a huge amount of calculation, especially in the case of a high sampling rate, and, moreover, 3D imaging. In order to achieve UACI rapidly with satisfactory resolution and SNR, this paper proposed an adaptive beamforming on the basis of compressive sensing (CS), which can retain the quality of adaptive beamforming but reduce the calculating amount substantially. The results of simulations and experiments showed that comparing with regular adaptive beamforming, this new method successfully achieved about eightfold in time consuming.
Compressive Sampling and Sparse reconstruction theory is applied to a linearly frequency modulated continuous wave hybrid lidar/radar system. The goal is to show that high resolution time of flight measurements to underwater targets can be obtained utilizing far fewer samples than dictated by Nyquist sampling theorems. Traditional mixing/down-conversion and matched filter signal processing methods are reviewed and compared to the Compressive Sampling and Sparse Reconstruction methods. Simulated evidence is provided to show the possible sampling rate reductions, and experiments are used to observe the effects that turbid underwater environments have on recovery. Results show that by using compressive sensing theory and sparse reconstruction, it is possible to achieve significant sample rate reduction while maintaining centimeter range resolution.
The electric network frequency (ENF) criterion is a recently developed technique for audio timestamp identification, which involves the matching between extracted ENF signal and reference data. For nearly a decade, conventional matching criterion has been based on the minimum mean squared error (MMSE) or maximum correlation coefficient. However, the corresponding performance is highly limited by low signal-to-noise ratio, short recording durations, frequency resolution problems, and so on. This paper presents a threshold-based dynamic matching algorithm (DMA), which is capable of autocorrecting the noise affected frequency estimates. The threshold is chosen according to the frequency resolution determined by the short-time Fourier transform (STFT) window size. A penalty coefficient is introduced to monitor the autocorrection process and finally determine the estimated timestamp. It is then shown that the DMA generalizes the conventional MMSE method. By considering the mainlobe width in the STFT caused by limited frequency resolution, the DMA achieves improved identification accuracy and robustness against higher levels of noise and the offset problem. Synthetic performance analysis and practical experimental results are provided to illustrate the advantages of the DMA.