Visible to the public Biblio

Filters: Keyword is elliptic curve encryption  [Clear All Filters]
2020-08-10
Yue, Tongxu, Wang, Chuang, Zhu, Zhi-xiang.  2019.  Hybrid Encryption Algorithm Based on Wireless Sensor Networks. 2019 IEEE International Conference on Mechatronics and Automation (ICMA). :690–694.
Based on the analysis of existing wireless sensor networks(WSNs) security vulnerability, combining the characteristics of high encryption efficiency of the symmetric encryption algorithm and high encryption intensity of asymmetric encryption algorithm, a hybrid encryption algorithm based on wireless sensor networks is proposed. Firstly, by grouping plaintext messages, this algorithm uses advanced encryption standard (AES) of symmetric encryption algorithm and elliptic curve encryption (ECC) of asymmetric encryption algorithm to encrypt plaintext blocks, then uses data compression technology to get cipher blocks, and finally connects MAC address and AES key encrypted by ECC to form a complete ciphertext message. Through the description and implementation of the algorithm, the results show that the algorithm can reduce the encryption time, decryption time and total running time complexity without losing security.
2020-04-20
Zaw, Than Myo, Thant, Min, Bezzateev, S. V..  2019.  Database Security with AES Encryption, Elliptic Curve Encryption and Signature. 2019 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF). :1–6.

A database is an organized collection of data. Though a number of techniques, such as encryption and electronic signatures, are currently available for the protection of data when transmitted across sites. Database security refers to the collective measures used to protect and secure a database or database management software from illegitimate use and malicious threats and attacks. In this paper, we create 6 types of method for more secure ways to store and retrieve database information that is both convenient and efficient. Confidentiality, integrity, and availability, also known as the CIA triad, is a model designed to guide policies for information security within the database. There are many cryptography techniques available among them, ECC is one of the most powerful techniques. A user wants to the data stores or request, the user needs to authenticate. When a user who is authenticated, he will get key from a key generator and then he must be data encrypt or decrypt within the database. Every keys store in a key generator and retrieve from the key generator. We use 256 bits of AES encryption for rows level encryption, columns level encryption, and elements level encryption for the database. Next two method is encrypted AES 256 bits random key by using 521 bits of ECC encryption and signature for rows level encryption and column level encryption. Last method is most secure method in this paper, which method is element level encryption with AES and ECC encryption for confidentiality and ECC signature use for every element within the database for integrity. As well as encrypting data at rest, it's also important to ensure confidential data are encrypted in motion over our network to protect against database signature security. The advantages of elements level are difficult for attack because the attacker gets a key that is lose only one element. The disadvantages need to thousands or millions of keys to manage.

2019-03-22
Mohammedi, M., Omar, M., Aitabdelmalek, W., Mansouri, A., Bouabdallah, A..  2018.  Secure and Lightweight Biometric-Based Remote Patient Authentication Scheme for Home Healthcare Systems. 2018 International Symposium on Programming and Systems (ISPS). :1-6.

Recently, the home healthcare system has emerged as one of the most useful technology for e-healthcare. Contrary to classical recording methods of patient's medical data, which are, based on paper documents, nowadays all this sensitive data can be managed and forwarded through digital systems. These make possible for both patients and healthcare workers to access medical data or receive remote medical treatment using wireless interfaces whenever and wherever. However, simplifying access to these sensitive and private data can directly put patient's health and life in danger. In this paper, we propose a secure and lightweight biometric-based remote patient authentication scheme using elliptic curve encryption through which two mobile healthcare system communication parties could authenticate each other in public mobile healthcare environments. The security and performance analysis demonstrate that our proposal achieves better security than other concurrent schemes, with lower storage, communication and computation costs.