Visible to the public Biblio

Filters: Keyword is gas sensors  [Clear All Filters]
2020-12-15
Eamsa-ard, T., Seesaard, T., Kerdcharoen, T..  2018.  Wearable Sensor of Humanoid Robot-Based Textile Chemical Sensors for Odor Detection and Tracking. 2018 International Conference on Engineering, Applied Sciences, and Technology (ICEAST). :1—4.

This paper revealed the development and implementation of the wearable sensors based on transient responses of textile chemical sensors for odorant detection system as wearable sensor of humanoid robot. The textile chemical sensors consist of nine polymer/CNTs nano-composite gas sensors which can be divided into three different prototypes of the wearable humanoid robot; (i) human axillary odor monitoring, (ii) human foot odor tracking, and (iii) wearable personal gas leakage detection. These prototypes can be integrated into high-performance wearable wellness platform such as smart clothes, smart shoes and wearable pocket toxic-gas detector. While operating mode has been designed to use ZigBee wireless communication technology for data acquisition and monitoring system. Wearable humanoid robot offers several platforms that can be applied to investigate the role of individual scent produced by different parts of the human body such as axillary odor and foot odor, which have potential health effects from abnormal or offensive body odor. Moreover, wearable personal safety and security component in robot is also effective for detecting NH3 leakage in environment. Preliminary results with nine textile chemical sensors for odor biomarker and NH3 detection demonstrates the feasibility of using the wearable humanoid robot to distinguish unpleasant odor released when you're physically active. It also showed an excellent performance to detect a hazardous gas like ammonia (NH3) with sensitivity as low as 5 ppm.

2020-01-13
Hu, Jizhou, Qu, Hemi, Guo, Wenlan, Chang, Ye, Pang, Wei, Duan, Xuexin.  2019.  Film Bulk Acoustic Wave Resonator for Trace Chemical Warfare Agents Simulants Detection in Micro Chromatography. 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems Eurosensors XXXIII (TRANSDUCERS EUROSENSORS XXXIII). :45–48.
This paper reported the polymer coated film bulk acoustic resonators (FBAR) as a sensitive detector in micro chromatography for the detection of trace chemical warfare agents (CWA) simulants. The FBAR sensor was enclosed in a microfluidic channel and then coupled with microfabricated separation column. The subsequent chromatographic analysis successfully demonstrated the detection of parts per billion (ppb) concentrations of chemical warfare agents (CWAs) simulants in a five components gas mixture. This work represented an important step toward the realization of FBAR based handheld micro chromatography for CWA detection in the field.
2019-03-25
Erbay, C., Ergïn, S..  2018.  Random Number Generator Based on Hydrogen Gas Sensor for Security Applications. 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS). :709–712.
Cryptographic applications need high-quality random number generator (RNG) for strong security and privacy measures. This paper presents RNG based on a hydrogen gas sensor that is fabricated by using microfabrication techniques. The proposed approach extracts the thermal noise information as an entropy source from the gas sensor that is non-deterministic during its operation and using hash function SHA-256 as post processing. This non-deterministic noise is then processed to acquire a random number set fulfilling the NIST 800-22 statistical randomness test suite and it demonstrates that a gas sensor based RNG can provide high-quality random numbers. Secure data transfer is possible by having this method directly without any other hardware where hydrogen gas sensor needs to be used such as petrochemical field, fuel cells, and nuclear reactors.