Biblio
Information Flow Control (IFC) is a collection of techniques for ensuring a no-write-down no-read-up style security policy known as noninterference. Traditional methods for both static (e.g. type systems) and dynamic (e.g. runtime monitors) IFC suffer from untenable numbers of false alarms on real-world programs. Secure Multi-Execution (SME) promises to provide secure information flow control without modifying the behaviour of already secure programs, a property commonly referred to as transparency. Implementations of SME exist for the web in the form of the FlowFox browser and as plug-ins to several programming languages. Furthermore, SME can in theory work in a black-box manner, meaning that it can be programming language agnostic, making it perfect for securing legacy or third-party systems. As such SME, and its variants like Multiple Facets (MF) and Faceted Secure Multi-Execution (FSME), appear to be a family of panaceas for the security engineer. The question is, how come, given all these advantages, that these techniques are not ubiquitous in practice? The answer lies, partially, in the issue of runtime and memory overhead. SME and its variants are prohibitively expensive to deploy in many non-trivial situations. The natural question is why is this the case? On the surface, the reason is simple. The techniques in the SME family all rely on the idea of multi-execution, running all or parts of a program multiple times to achieve noninterference. Naturally, this causes some overhead. However, the predominant thinking in the IFC community has been that these overheads can be overcome. In this paper we argue that there are fundamental reasons to expect this not to be the case and prove two key theorems: (1) All transparent enforcement is polynomial time equivalent to multi-execution. (2) All black-box enforcement takes time exponential in the number of principals in the security lattice. Our methods also allow us to answer, in the affirmative, an open question about the possibility of secure and transparent enforcement of a security condition known as Termination Insensitive Noninterference.
Mobile Ad-hoc network is decentralized and composed of various individual devices for communicating with each other. Its distributed nature and infrastructure deficiency are the way for various attacks in the network. On implementing Intrusion detection systems (IDS) in ad-hoc node securities were enhanced by means of auditing and monitoring process. This system is composed with clustering protocols which are highly effective in finding the intrusions with minimal computation cost on power and overhead. The existing protocols were linked with the routes, which are not prominent in detecting intrusions. The poor route structure and route renewal affect the cluster hardly. By which the cluster are unstable and results in maximization processing along with network traffics. Generally, the ad hoc networks are structured with battery and rely on power limitation. It needs an active monitoring node for detecting and responding quickly against the intrusions. It can be attained only if the clusters are strong with extensive sustaining capability. Whenever the cluster changes the routes also change and the prominent processing of achieving intrusion detection will not be possible. This raises the need of enhanced clustering algorithm which solved these drawbacks and ensures the network securities in all manner. We proposed CBIDP (cluster based Intrusion detection planning) an effective clustering algorithm which is ahead of the existing routing protocol. It is persistently irrespective of routes which monitor the intrusion perfectly. This simplified clustering methodology achieves high detecting rates on intrusion with low processing as well as memory overhead. As it is irrespective of the routes, it also overcomes the other drawbacks like traffics, connections and node mobility on the network. The individual nodes in the network are not operative on finding the intrusion or malicious node, it can be achieved by collaborating the clustering with the system.