Visible to the public Biblio

Filters: Keyword is information industry  [Clear All Filters]
2023-09-08
Liu, Shaogang, Chen, Jiangli, Hong, Guihua, Cao, Lizhu, Wu, Ming.  2022.  Research on UAV Network System Security Risk Evaluation Oriented to Geographic Information Data. 2022 IEEE International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA). :57–60.
With the advent of the Internet era, all walks of life in our country have undergone earth-shaking changes, especially the drone and geographic information industries, which have developed rapidly under the impetus of the Internet of Things era. However, with the continuous development of science and technology, the network structure has become more and more complex, and the types of network attacks have varied. UAV information security and geographic information data have appeared security risks on the network. These hidden dangers have contributed to the progress of the drone and geographic information industry. And development has caused a great negative impact. In this regard, this article will conduct research on the network security of UAV systems and geographic information data, which can effectively assess the network security risks of UAV systems, and propose several solutions to potential safety hazards to reduce UAV networks. Security risks and losses provide a reference for UAV system data security.
2020-05-04
Liu, Shan, Yue, Keming, Zhang, Yu, Yang, Huq, Liu, Lu, Duan, Xiaorong.  2018.  The Research on IOT Security Architecture and Its Key Technologies. 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). :1277–1280.
With the development of scientific information technology, the emergence of the Internet of Things (IOT) promoted the information industry once again to a new stage of economic and technological development. From the perspective of confidentiality, integrity, and availability of information security, this paper analyzed the current state of the IOT and the security threats, and then researched the security primary technologies of the IOT security architecture. IOT security architecture established the foundation for a reliable information security system for the IOT.
2019-04-05
Dong, X., Hu, J., Cui, Y..  2018.  Overview of Botnet Detection Based on Machine Learning. 2018 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE). :476-479.

With the rapid development of the information industry, the applications of Internet of things, cloud computing and artificial intelligence have greatly affected people's life, and the network equipment has increased with a blowout type. At the same time, more complex network environment has also led to a more serious network security problem. The traditional security solution becomes inefficient in the new situation. Therefore, it is an important task for the security industry to seek technical progress and improve the protection detection and protection ability of the security industry. Botnets have been one of the most important issues in many network security problems, especially in the last one or two years, and China has become one of the most endangered countries by botnets, thus the huge impact of botnets in the world has caused its detection problems to reset people's attention. This paper, based on the topic of botnet detection, focuses on the latest research achievements of botnet detection based on machine learning technology. Firstly, it expounds the application process of machine learning technology in the research of network space security, introduces the structure characteristics of botnet, and then introduces the machine learning in botnet detection. The security features of these solutions and the commonly used machine learning algorithms are emphatically analyzed and summarized. Finally, it summarizes the existing problems in the existing solutions, and the future development direction and challenges of machine learning technology in the research of network space security.