Visible to the public Biblio

Filters: Author is Liu, Lu  [Clear All Filters]
2023-07-31
Liu, Lu, Song, Suwen, Wang, Zhongfeng.  2022.  A Novel Interleaving Scheme for Concatenated Codes on Burst-Error Channel. 2022 27th Asia Pacific Conference on Communications (APCC). :309—314.
With the rapid development of Ethernet, RS (544, 514) (KP4-forward error correction), which was widely used in high-speed Ethernet standards for its good performance-complexity trade-off, may not meet the demands of next-generation Ethernet for higher data transmission speed and better decoding performance. A concatenated code based on KP4-FEC has become a good solution because of its low complexity and excellent compatibility. For concatenated codes, aside from the selection of outer and inner codes, an efficient interleaving scheme is also very critical to deal with different channel conditions. Aiming at burst errors in wired communication, we propose a novel matrix interleaving scheme for concatenated codes which set the outer code as KP4-FEC and the inner code as Bose-Chaudhuri-Hocquenghem (BCH) code. In the proposed scheme, burst errors are evenly distributed to each BCH code as much as possible to improve their overall decoding efficiency. Meanwhile, the bit continuity in each symbol of the RS codeword is guaranteed during transmission, so the number of symbols affected by burst errors is minimized. Simulation results demonstrate that the proposed interleaving scheme can achieve a better decoding performance on burst-error channels than the original scheme. In some cases, the extra coding gain at the bit-error-rate (BER) of 1 × 10−15 can even reach 1 dB.
2022-03-14
Xu, Zixuan, Zhang, Jingci, Ai, Shang, Liang, Chen, Liu, Lu, Li, Yuanzhang.  2021.  Offensive and Defensive Countermeasure Technology of Return-Oriented Programming. 2021 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing Communications (GreenCom) and IEEE Cyber, Physical Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :224–228.
The problem of buffer overflow in the information system is not threatening, and the system's own defense mechanism can detect and terminate code injection attacks. However, as countermeasures compete with each other, advanced stack overflow attacks have emerged: Return Oriented-Programming (ROP) technology, which has become a hot spot in the field of system security research in recent years. First, this article explains the reason for the existence of this technology and the attack principle. Secondly, it systematically expounds the realization of the return-oriented programming technology at home and abroad in recent years from the common architecture platform, the research of attack load construction, and the research of variants based on ROP attacks. Finally, we summarize the paper.
2020-05-04
Liu, Shan, Yue, Keming, Zhang, Yu, Yang, Huq, Liu, Lu, Duan, Xiaorong.  2018.  The Research on IOT Security Architecture and Its Key Technologies. 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). :1277–1280.
With the development of scientific information technology, the emergence of the Internet of Things (IOT) promoted the information industry once again to a new stage of economic and technological development. From the perspective of confidentiality, integrity, and availability of information security, this paper analyzed the current state of the IOT and the security threats, and then researched the security primary technologies of the IOT security architecture. IOT security architecture established the foundation for a reliable information security system for the IOT.