Biblio
Cooperative MIMO communication is a promising technology which enables realistic solution for improving communication performance with MIMO technique in wireless networks that are composed of size and cost constrained devices. However, the security problems inherent to cooperative communication also arise. Cryptography can ensure the confidentiality in the communication and routing between authorized participants, but it usually cannot prevent the attacks from compromised nodes which may corrupt communications by sending garbled signals. In this paper, we propose a cross-layered approach to enhance the security in query-based cooperative MIMO sensor networks. The approach combines efficient cryptographic technique implemented in upper layer with a novel information theory based compromised nodes detection algorithm in physical layer. In the detection algorithm, a cluster of K cooperative nodes are used to identify up to K - 1 active compromised nodes. When the compromised nodes are detected, the key revocation is performed to isolate the compromised nodes and reconfigure the cooperative MIMO sensor network. During this process, beamforming is used to avoid the information leaking. The proposed security scheme can be easily modified and applied to cognitive radio networks. Simulation results show that the proposed algorithm for compromised nodes detection is effective and efficient, and the accuracy of received information is significantly improved.
This paper considers the physical layer security for the cluster-based cooperative wireless sensor networks (WSNs), where each node is equipped with a single antenna and sensor nodes cooperate at each cluster of the network to form a virtual multi-input multi-output (MIMO) communication architecture. We propose a joint cooperative beamforming and jamming scheme to enhance the security of the WSNs where a part of sensor nodes in Alice's cluster are deployed to transmit beamforming signals to Bob while a part of sensor nodes in Bob's cluster are utilized to jam Eve with artificial noise. The optimization of beamforming and jamming vectors to minimize total energy consumption satisfying the quality-of-service (QoS) constraints is a NP-hard problem. Fortunately, through reformulation, the problem is proved to be a quadratically constrained quadratic problem (QCQP) which can be solved by solving constraint integer programs (SCIP) algorithm. Finally, we give the simulation results of our proposed scheme.
We investigate large wireless networks subject to security constraints. In contrast to point-to-point, interference-limited communications considered in prior works, we propose active cooperative relaying based schemes. We consider a network with nl legitimate nodes and ne eavesdroppers, and path loss exponent α ≥ 2. As long as ne2(log(ne))γ = o(nl) holds for some positive γ, we show one can obtain unbounded secure aggregate rate. This means zero-cost secure communication, given a fixed total power constraint for the entire network. We achieve this result with (i) the source using Wyner randomized encoder and a serial (multi-stage) block Markov scheme, to cooperate with the relays, and (ii) the relays acting as a virtual multi-antenna to apply beamforming against the eavesdroppers. Our simpler parallel (two-stage) relaying scheme can achieve the same unbounded secure aggregate rate when neα/2 + 1 (log(ne))γ+δ(α/2+1) = o(nl) holds, for some positive γ, δ.