Liu, Pan, Tang, Zhangchun, Gao, Qiang, Xiong, Wenbin.
2022.
Physical Design of Local-volume Ignition for Inertial Confinement Fusion. 2022 International Conference on Applied Physics and Computing (ICAPC). :94–99.
Inertial Confinement Fusion(ICF) uses the inertia of the substance itself to confine the nest-temperature thermonuclear fuel plasma to achieve thermonuclear fusion and obtain fusion energy. In the design of the local-volume ignition target capsule, the ignition zone and the main combustion zone are separated by heavy medium. The ignition zone is located in the center of the system (the part of the fusion combustion). The mass is small and can be compressed to high density and the overall temperature is raised to the ignition state (local-volume ignition). The temperature increase and density increase of the local volume ignition are relatively decoupled in time. The multi-step enhanced shock wave heats the fuel temperature drop, after which the collision effect accelerates the metal shell layer by layer, and uses the inertia of high-Z metal shell with a larger residual mass to achieve effective compression of the fuel areal after the driving source ends for a long time. Local volume ignition has the advantages of no need to reshape the radiation driving pulse, resistance to the influence of hot electrons, less demanding compression symmetry, and large combustion gain.
Provencher, C. M., Johnson, A. J., Carroll, E. G., Povilus, A. P., Javedani, J., Stygar, W. A., Kozioziemski, B. J., Moody, J. D., Tang, V..
2022.
A Pulsed Power Design Optimization Code for Magnetized Inertial Confinement Fusion Experiments at the National Ignition Facility. 2022 IEEE International Conference on Plasma Science (ICOPS). :1–1.
The MagNIF team at LLNL is developing a pulsed power platform to enable magnetized inertial confinement fusion and high energy density experiments at the National Ignition Facility. A pulsed solenoidal driver capable of premagnetizing fusion fuel to 40T is predicted to increase performance of indirect drive implosions. We have written a specialized Python code suite to support the delivery of a practical design optimized for target magnetization and risk mitigation. The code simulates pulsed power in parameterized system designs and converges to high-performance candidates compliant with evolving engineering constraints, such as scale, mass, diagnostic access, mechanical displacement, thermal energy deposition, facility standards, and component-specific failure modes. The physics resolution and associated computational costs of our code are intermediate between those of 0D circuit codes and 3D magnetohydrodynamic codes, to be predictive and support fast, parallel simulations in parameter space. Development of a reduced-order, physics-based target model is driven by high-resolution simulations in ALE3D (an institutional multiphysics code) and multi-diagnostic data from a commissioned pulser platform. Results indicate system performance is sensitive to transient target response, which should include magnetohydrodynamic expansion, resistive heating, nonlinear magnetic diffusion, and phase change. Design optimization results for a conceptual NIF platform are reported.
ISSN: 2576-7208
Carroll, E. G., Bracamontes, G., Piston, K., James, G. F., Provencher, C. M., Javedani, J., Stygar, W. A., Povilus, A. P., Vonhof, S., Yanagisawa, D. K. et al..
2022.
A New Pulsed Power System for Generating Up To 40t Magnetic Seeds Fields for Cryogenic Inertial Confinement Fusion Experiments on The National Ignition Facility. 2022 IEEE International Conference on Plasma Science (ICOPS). :1–1.
A new pulse power system is being developed with the goal of generating up to 40T seed magnetic fields for increasing the fusion yield of indirect drive inertial confinement fusion (ICF) experiments on the National Ignition Facility. This pulser is located outside of the target chamber and delivers a current pulse to the target through a coaxial cable bundle and custom flex-circuit strip-lines integrated into a cryogenic target positioner. At the target, the current passes through a multi-turn solenoid wrapped around the outside of a hohlraum and is insulated with Kapton coating. A 11.33 uF capacitor, charged up to 40 kV and switched by spark-gap, drives up to 40 kA of current before the coil disassembles. A custom Python design optimization code was written to maximize peak magnetic field strength while balancing competing pulser, load and facility constraints. Additionally, using an institutional multi-physics code, ALE3D, simulations that include coil dynamics such as temperature dependent resistance, coil forces and motion, and magnetic diffusion were conducted for detailed analysis of target coils. First experiments are reported as well as comparisons with current modelling efforts.
ISSN: 2576-7208