Visible to the public Biblio

Filters: Keyword is garbled circuit  [Clear All Filters]
2019-06-17
Rouhani, Bita Darvish, Riazi, M. Sadegh, Koushanfar, Farinaz.  2018.  Deepsecure: Scalable Provably-secure Deep Learning. Proceedings of the 55th Annual Design Automation Conference. :2:1–2:6.
This paper presents DeepSecure, the an scalable and provably secure Deep Learning (DL) framework that is built upon automated design, efficient logic synthesis, and optimization methodologies. DeepSecure targets scenarios in which neither of the involved parties including the cloud servers that hold the DL model parameters or the delegating clients who own the data is willing to reveal their information. Our framework is the first to empower accurate and scalable DL analysis of data generated by distributed clients without sacrificing the security to maintain efficiency. The secure DL computation in DeepSecure is performed using Yao's Garbled Circuit (GC) protocol. We devise GC-optimized realization of various components used in DL. Our optimized implementation achieves up to 58-fold higher throughput per sample compared with the best prior solution. In addition to the optimized GC realization, we introduce a set of novel low-overhead pre-processing techniques which further reduce the GC overall runtime in the context of DL. Our extensive evaluations demonstrate up to two orders-of-magnitude additional runtime improvement achieved as a result of our pre-processing methodology.
2019-05-01
Chen, D., Chen, W., Chen, J., Zheng, P., Huang, J..  2018.  Edge Detection and Image Segmentation on Encrypted Image with Homomorphic Encryption and Garbled Circuit. 2018 IEEE International Conference on Multimedia and Expo (ICME). :1-6.

Edge detection is one of the most important topics of image processing. In the scenario of cloud computing, performing edge detection may also consider privacy protection. In this paper, we propose an edge detection and image segmentation scheme on an encrypted image with Sobel edge detector. We implement Gaussian filtering and Sobel operator on the image in the encrypted domain with homomorphic property. By implementing an adaptive threshold decision algorithm in the encrypted domain, we obtain a threshold determined by the image distribution. With the technique of garbled circuit, we perform comparison in the encrypted domain and obtain the edge of the image without decrypting the image in advanced. We then propose an image segmentation scheme on the encrypted image based on the detected edges. Our experiments demonstrate the viability and effectiveness of the proposed encrypted image edge detection and segmentation.