Biblio
Filters: Keyword is RSUs [Clear All Filters]
State-of-the-art: Data Dissemination Techniques in Vehicular Ad-hoc Networks. 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom). :126—131.
.
2022. Vehicular Ad-hoc Networks (VANETs) is a very fast emerging research area these days due to their contribution in designing Intelligent transportation systems (ITS). ITS is a well-organized group of wireless networks. It is a derived class of Mobile Ad-hoc Networks (MANETs). VANET is an instant-formed ad-hoc network, due to the mobility of vehicles on the road. The goal of using ITS is to enhance road safety, driving comfort, and traffic effectiveness by alerting the drivers at right time about upcoming dangerous situations, traffic jams, road diverted, weather conditions, real-time news, and entertainment. We can consider Vehicular communication as an enabler for future driverless cars. For these all above applications, it is necessary to make a threat-free environment to establish secure, fast, and efficient communication in VANETs. In this paper, we had discussed the overviews, characteristics, securities, applications, and various data dissemination techniques in VANET.
Learning-Based Rogue Edge Detection in VANETs with Ambient Radio Signals. 2018 IEEE International Conference on Communications (ICC). :1-6.
.
2018. Edge computing for mobile devices in vehicular ad hoc networks (VANETs) has to address rogue edge attacks, in which a rogue edge node claims to be the serving edge in the vehicle to steal user secrets and help launch other attacks such as man-in-the-middle attacks. Rogue edge detection in VANETs is more challenging than the spoofing detection in indoor wireless networks due to the high mobility of onboard units (OBUs) and the large-scale network infrastructure with roadside units (RSUs). In this paper, we propose a physical (PHY)- layer rogue edge detection scheme for VANETs according to the shared ambient radio signals observed during the same moving trace of the mobile device and the serving edge in the same vehicle. In this scheme, the edge node under test has to send the physical properties of the ambient radio signals, including the received signal strength indicator (RSSI) of the ambient signals with the corresponding source media access control (MAC) address during a given time slot. The mobile device can choose to compare the received ambient signal properties and its own record or apply the RSSI of the received signals to detect rogue edge attacks, and determines test threshold in the detection. We adopt a reinforcement learning technique to enable the mobile device to achieve the optimal detection policy in the dynamic VANET without being aware of the VANET model and the attack model. Simulation results show that the Q-learning based detection scheme can significantly reduce the detection error rate and increase the utility compared with existing schemes.