Visible to the public Biblio

Filters: Keyword is Knowledgebase  [Clear All Filters]
2021-06-24
Hughes, Kieran, McLaughlin, Kieran, Sezer, Sakir.  2020.  Dynamic Countermeasure Knowledge for Intrusion Response Systems. 2020 31st Irish Signals and Systems Conference (ISSC). :1–6.
Significant advancements in Intrusion Detection Systems has led to improved alerts. However, Intrusion Response Systems which aim to automatically respond to these alerts, is a research area which is not yet advanced enough to benefit from full automation. In Security Operations Centres, analysts can implement countermeasures using knowledge and past experience to adapt to new attacks. Attempts at automated Intrusion Response Systems fall short when a new attack occurs to which the system has no specific knowledge or effective countermeasure to apply, even leading to overkill countermeasures such as restarting services and blocking ports or IPs. In this paper, a countermeasure standard is proposed which enables countermeasure intelligence sharing, automated countermeasure adoption and execution by an Intrusion Response System. An attack scenario is created on an emulated network using the Common Open Research Emulator, where an insider attack attempts to exploit a buffer overflow on an Exim mail server. Experiments demonstrate that an Intrusion Response System with dynamic countermeasure knowledge can stop attacks that would otherwise succeed with a static predefined countermeasure approach.
2021-04-08
Althebyan, Q..  2019.  A Mobile Edge Mitigation Model for Insider Threats: A Knowledgebase Approach. 2019 International Arab Conference on Information Technology (ACIT). :188—192.
Taking care of security at the cloud is a major issue that needs to be carefully considered and solved for both individuals as well as organizations. Organizations usually expect more trust from employees as well as customers in one hand. On the other hand, cloud users expect their private data is maintained and secured. Although this must be case, however, some malicious outsiders of the cloud as well as malicious insiders who are cloud internal users tend to disclose private data for their malicious uses. Although outsiders of the cloud should be a concern, however, the more serious problems come from Insiders whose malicious actions are more serious and sever. Hence, insiders' threats in the cloud should be the top most problem that needs to be tackled and resolved. This paper aims to find a proper solution for the insider threat problem in the cloud. The paper presents a Mobile Edge Computing (MEC) mitigation model as a solution that suits the specialized nature of this problem where the solution needs to be very close to the place where insiders reside. This in fact gives real-time responses to attack, and hence, reduces the overhead in the cloud.
2020-10-12
Rudd-Orthner, Richard N M, Mihaylova, Lyudmilla.  2019.  An Algebraic Expert System with Neural Network Concepts for Cyber, Big Data and Data Migration. 2019 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT). :1–6.

This paper describes a machine assistance approach to grading decisions for values that might be missing or need validation, using a mathematical algebraic form of an Expert System, instead of the traditional textual or logic forms and builds a neural network computational graph structure. This Experts System approach is also structured into a neural network like format of: input, hidden and output layers that provide a structured approach to the knowledge-base organization, this provides a useful abstraction for reuse for data migration applications in big data, Cyber and relational databases. The approach is further enhanced with a Bayesian probability tree approach to grade the confidences of value probabilities, instead of the traditional grading of the rule probabilities, and estimates the most probable value in light of all evidence presented. This is ground work for a Machine Learning (ML) experts system approach in a form that is closer to a Neural Network node structure.

2019-05-08
Yaseen, Q., Alabdulrazzaq, A., Albalas, F..  2019.  A Framework for Insider Collusion Threat Prediction and Mitigation in Relational Databases. 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC). :0721–0727.

This paper proposes a framework for predicting and mitigating insider collusion threat in relational database systems. The proposed model provides a robust technique for database architect and administrators to predict insider collusion threat when designing database schema or when granting privileges. Moreover, it proposes a real time monitoring technique that monitors the growing knowledgebases of insiders while executing transactions and the possible collusion insider attacks that may be launched based on insiders accesses and inferences. Furthermore, the paper proposes a mitigating technique based on the segregation of duties principle and the discovered collusion insider threat to mitigate the problem. The proposed model was tested to show its usefulness and applicability.