Visible to the public Biblio

Filters: Keyword is network security situation awareness  [Clear All Filters]
2021-11-29
Wang, Yixuan, Li, Yujun, Chen, Xiang, Luo, Yeni.  2020.  Implementing Network Attack Detection with a Novel NSSA Model Based on Knowledge Graphs. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1727–1732.
With the rapid development of networks, cyberspace security is facing increasingly severe challenges. Traditional alert aggregation process and alert correlation analysis process are susceptible to a large amount of redundancy and false alerts. To tackle the challenge, this paper proposes a network security situational awareness model KG-NSSA (Knowledge-Graph-based NSSA) based on knowledge graphs. This model provides an asset-based network security knowledge graph construction scheme. Based on the network security knowledge graph, a solution is provided for the classic problem in the field of network security situational awareness - network attack scenario discovery. The asset-based network security knowledge graph combines the asset information of the monitored network and fully considers the monitoring of network traffic. The attack scenario discovery according to the KG-NSSA model is to complete attack discovery and attack association through attribute graph mining and similarity calculation, which can effectively reflect specific network attack behaviors and mining attack scenarios. The effectiveness of the proposed method is verified on the MIT DARPA2000 data set. Our work provides a new approach for network security situational awareness.
2020-05-08
Zhang, Xu, Ye, Zhiwei, Yan, Lingyu, Wang, Chunzhi, Wang, Ruoxi.  2018.  Security Situation Prediction based on Hybrid Rice Optimization Algorithm and Back Propagation Neural Network. 2018 IEEE 4th International Symposium on Wireless Systems within the International Conferences on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS-SWS). :73—77.
Research on network security situation awareness is currently a research hotspot in the field of network security. It is one of the easiest and most effective methods to use the BP neural network for security situation prediction. However, there are still some problems in BP neural network, such as slow convergence rate, easy to fall into local extremum, etc. On the other hand, some common used evolutionary algorithms, such as genetic algorithm (GA) and particle swarm optimization (PSO), easily fall into local optimum. Hybrid rice optimization algorithm is a newly proposed algorithm with strong search ability, so the method of this paper is proposed. This article describes in detail the use of BP network security posture prediction method. In the proposed method, HRO is used to train the connection weights of the BP network. Through the advantages of HRO global search and fast convergence, the future security situation of the network is predicted, and the accuracy of the situation prediction is effectively improved.
2019-05-09
Lu, G., Feng, D..  2018.  Network Security Situation Awareness for Industrial Control System Under Integrity Attacks. 2018 21st International Conference on Information Fusion (FUSION). :1808-1815.

Due to the wide implementation of communication networks, industrial control systems are vulnerable to malicious attacks, which could cause potentially devastating results. Adversaries launch integrity attacks by injecting false data into systems to create fake events or cover up the plan of damaging the systems. In addition, the complexity and nonlinearity of control systems make it more difficult to detect attacks and defense it. Therefore, a novel security situation awareness framework based on particle filtering, which has good ability in estimating state for nonlinear systems, is proposed to provide an accuracy understanding of system situation. First, a system state estimation based on particle filtering is presented to estimate nodes state. Then, a voting scheme is introduced into hazard situation detection to identify the malicious nodes and a local estimator is constructed to estimate the actual system state by removing the identified malicious nodes. Finally, based on the estimated actual state, the actual measurements of the compromised nodes are predicted by using the situation prediction algorithm. At the end of this paper, a simulation of a continuous stirred tank is conducted to verify the efficiency of the proposed framework and algorithms.