Biblio
Cyber-Physical Systems (CPS) are playing important roles in the critical infrastructure now. A prominent family of CPSs are networked control systems in which the control and feedback signals are carried over computer networks like the Internet. Communication over insecure networks make system vulnerable to cyber attacks. In this article, we design an intrusion detection and compensation framework based on system/plant identification to fight covert attacks. We collect error statistics of the output estimation during the learning phase of system operation and after that, monitor the system behavior to see if it significantly deviates from the expected outputs. A compensating controller is further designed to intervene and replace the classic controller once the attack is detected. The proposed model is tested on a DC motor as the plant and is put against a deception signal amplification attack over the forward link. Simulation results show that the detection algorithm well detects the intrusion and the compensator is also successful in alleviating the attack effects.
Cooperative Intelligent Transport Systems (C-ITS) are expected to play an important role in our lives. They will improve the traffic safety and bring about a revolution on the driving experience. However, these benefits are counterbalanced by possible attacks that threaten not only the vehicle's security, but also passengers' lives. One of the most common attacks is the Sybil attack, which is even more dangerous than others because it could be the starting point of many other attacks in C-ITS. This paper proposes a distributed approach allowing the detection of Sybil attacks by using the traffic flow theory. The key idea here is that each vehicle will monitor its neighbourhood in order to detect an eventual Sybil attack. This is achieved by a comparison between the real accurate speed of the vehicle and the one estimated using the V2V communications with vehicles in the vicinity. The estimated speed is derived by using the traffic flow fundamental diagram of the road's portion where the vehicles are moving. This detection algorithm is validated through some extensive simulations conducted using the well-known NS3 network simulator with SUMO traffic simulator.
In this paper a joint algorithm was designed to detect a variety of unauthorized access risks in multilevel hybrid cloud. First of all, the access history is recorded among different virtual machines in multilevel hybrid cloud using the global flow diagram. Then, the global flow graph is taken as auxiliary decision-making basis to design legitimacy detection algorithm based data access and is represented by formal representation, Finally the implement process was specified, and the algorithm can effectively detect operating against regulations such as simple unauthorized level across, beyond indirect unauthorized and other irregularities.
Reduction of Quality (RoQ) attack is a stealthy denial of service attack. It can decrease or inhibit normal TCP flows in network. Victims are hard to perceive it as the final network throughput is decreasing instead of increasing during the attack. Therefore, the attack is strongly hidden and it is difficult to be detected by existing detection systems. Based on the principle of Time-Frequency analysis, we propose a two-stage detection algorithm which combines anomaly detection with misuse detection. In the first stage, we try to detect the potential anomaly by analyzing network traffic through Wavelet multiresolution analysis method. According to different time-domain characteristics, we locate the abrupt change points. In the second stage, we further analyze the local traffic around the abrupt change point. We extract the potential attack characteristics by autocorrelation analysis. By the two-stage detection, we can ultimately confirm whether the network is affected by the attack. Results of simulations and real network experiments demonstrate that our algorithm can detect RoQ attacks, with high accuracy and high efficiency.