Visible to the public Biblio

Filters: Keyword is runtime enforcement  [Clear All Filters]
2021-01-25
Lanotte, R., Merro, M., Munteanu, A..  2020.  Runtime Enforcement for Control System Security. 2020 IEEE 33rd Computer Security Foundations Symposium (CSF). :246–261.
With the explosion of Industry 4.0, industrial facilities and critical infrastructures are transforming into “smart” systems that dynamically adapt to external events. The result is an ecosystem of heterogeneous physical and cyber components, such as programmable logic controllers, which are more and more exposed to cyber-physical attacks, i.e., security breaches in cyberspace that adversely affect the physical processes at the core of industrial control systems. We apply runtime enforcement techniques, based on an ad-hoc sub-class of Ligatti et al.'s edit automata, to enforce specification compliance in networks of potentially compromised controllers, formalised in Hennessy and Regan's Timed Process Language. We define a synthesis algorithm that, given an alphabet P of observable actions and an enforceable regular expression e capturing a timed property for controllers, returns a monitor that enforces the property e during the execution of any (potentially corrupted) controller with alphabet P and complying with the property e. Our monitors correct and suppress incorrect actions coming from corrupted controllers and emit actions in full autonomy when the controller under scrutiny is not able to do so in a correct manner. Besides classical properties, such as transparency and soundness, the proposed enforcement ensures non-obvious properties, such as polynomial complexity of the synthesis, deadlock- and diverge-freedom of monitored controllers, together with scalability when dealing with networks of controllers.
2020-10-30
Pearce, Hammond, Pinisetty, Srinivas, Roop, Partha S., Kuo, Matthew M. Y., Ukil, Abhisek.  2020.  Smart I/O Modules for Mitigating Cyber-Physical Attacks on Industrial Control Systems. IEEE Transactions on Industrial Informatics. 16:4659—4669.

Cyber-physical systems (CPSs) are implemented in many industrial and embedded control applications. Where these systems are safety-critical, correct and safe behavior is of paramount importance. Malicious attacks on such CPSs can have far-reaching repercussions. For instance, if elements of a power grid behave erratically, physical damage and loss of life could occur. Currently, there is a trend toward increased complexity and connectivity of CPS. However, as this occurs, the potential attack vectors for these systems grow in number, increasing the risk that a given controller might become compromised. In this article, we examine how the dangers of compromised controllers can be mitigated. We propose a novel application of runtime enforcement that can secure the safety of real-world physical systems. Here, we synthesize enforcers to a new hardware architecture within programmable logic controller I/O modules to act as an effective line of defence between the cyber and the physical domains. Our enforcers prevent the physical damage that a compromised control system might be able to perform. To demonstrate the efficacy of our approach, we present several benchmarks, and show that the overhead for each system is extremely minimal.

2019-06-17
Pupo, Angel Luis Scull, Nicolay, Jens, Boix, Elisa Gonzalez.  2018.  GUARDIA: Specification and Enforcement of Javascript Security Policies Without VM Modifications. Proceedings of the 15th International Conference on Managed Languages & Runtimes. :17:1–17:15.
The complex architecture of browser technologies and dynamic characteristics of JavaScript make it difficult to ensure security in client-side web applications. Browser-level security policies alone are not sufficient because it is difficult to apply them correctly and they can be bypassed. As a result, they need to be completed by application-level security policies. In this paper, we survey existing solutions for specifying and enforcing application-level security policies for client-side web applications, and distill a number of desirable features. Based on these features we developed Guardia, a framework for declaratively specifying and dynamically enforcing application-level security policies for JavaScript web applications without requiring VM modifications. We describe Guardia enforcement mechanism by means of JavaScript reflection with respect to three important security properties (transparency, tamper-proofness, and completeness). We also use Guardia to specify and deploy 12 access control policies discussed in related work in three experimental applications that are representative of real-world applications. Our experiments indicate that Guardia is correct, transparent, and tamper-proof, while only incurring a reasonable runtime overhead.